Реклама

Главная - Гудмен Линда
Зависимость сопротивления кремниевой пластины от легирования. Зеленая энергетика и ядерный кремний. Смотреть что такое "Легирование" в других словарях

Чистый беспримесный полупроводник - исходный материал для изготовления полупроводниковых приборов. В нем создают электронно-дырочный -переход, возникающий на стыке зон разной проводимости, который позволяет выпрямлять и усиливать ток, превращать различные виды энергии в электрическую и т. д.

Для получения в монокристаллах определенной проводимости применяют специальное легирование очищенных германия или кремния. Легирующие элементы вводят в микродозах, содержание их не превышает

Для полупроводниковых приборов используют пластины, на которые разрезают легированные объемные монокристаллы определенной проводимости. Для стабильности рабочих характеристик таких приборов монокристалл должен иметь по всей длине однородную проводимость, т. е. равномерное распределение легирующей примеси.

Метод вытягивания монокристалла из расплава очищенного полупроводника с введенной легирующей примесью - один из способов получения легированных монокристаллов германия и кремния.

Легирующие примеси должны иметь небольшие значения коэффициента распределения. Только в этом случае при

Рис. 17.19. Зонное выравнивание монокристалла

обогащении расплава легирующей примесью состав растущего монокристалла незначительно изменяется по длине и его можно выровнять снижением скорости вытягивания.

Коэффициент распределения снижается при уменьшении скорости вытягивания (см. рис. 17.16). Используя это, можно начать процесс выращивания монокристалла из расплава при скорости Для компенсации увеличения концентрации легирующей примеси в расплаве вследствие убыли атомов полупроводника скорость вытягивания со временем несколько снижают. Это приводит к снижению К и обеспечивает постоянство легирующей присадки в растущем монокристалле.

ТАБЛИЦА 17.7. Свойства чистого и легированного германия и кремния

Метод зонного выравнивания (рис. 17.19) применяют также для получения легированных монокристаллов с однородной проводимостью по длине.

Очищенный монокристалл вместе с затравкой помещают в вакуумную камеру. После оплавления затравки индуктор перемещают вправо с постоянной скоростью. В расплавленную зону вводят легирующую примесь.

Из формулы (17.3) следует, что постоянство концентрации примеси в прутке будет достигнуто при малом К, если легирующая примесь введена в него в большом количестве и убыль ее в ходе процесса ничтожно мала. При большом значении К (см. рис. 17.19) расплав быстро обедняется, что вызывает уменьшение примеси в монокристалле.

Степень легирования, так же как и степень очистки, контролируют изменением электрического сопротивления. Специальными методами определяют тип проводимости, время жизни или диффузионную длину Измеренные параметры указывают в марках легированных полупроводников.

Некоторые марки чистого и легированного германия и кремния приведены в табл. 17.7. Первая цифра в марке указывает значение электрического сопротивления, а вторая - диффузионную длину L.

Для получения -переходов используют диффузионный или сплавно-диффузионный

методы и ионное легирование в тлеющем разряде.

При диффузионном методе легирующая примесь попадает в пластинку полупроводника в результате диффузии из газовой фазы, в состав которой входит легирующая примесь. Так, для диффузии донорной примеси - фосфора в дырочный германий используют соединение, которое при нагреве испаряется, переносится потоком аргона в зону диффузии с более высокой температурой и там диссоциирует с образованием активного атомарного фосфора.

На поверхности пластины фосфор взаимодействует с атомами полупроводника и диффундирует в германий, образуя с ним твердый раствор замещения. Возможность диффузии атомов легирующей примеси обусловлена наличием в полупроводнике точечных дефектов (вакансий).

Этот метод дает хорошую воспроизводимость основных характеристик, что позволяет его использовать в серийном производстве. Кроме этого, он дает возможность вводить примеси совместно, используя различные коэффициенты диффузии вводимых веществ. При диффузии донорной примеси в пластинке германия с -проводимостью на некотором расстоянии от поверхности возникает -переход (рис. 17.20). Меняя температуру процесса и время выдержки, можно получать -переход на любой глубине.

Рис. 17.20. Образование -перехода путем диффузии сурьмы в германии -типа

Рис. 17.21. Образование -переходов путем диффузии сурьмы и галлия в германий -типа

Метод диффузии позволяет получать сразу несколько -переходов в одной пластине. В этом случае газовая среда должна содержать и донорную и акцепторную примеси. Коэффициенты диффузии донорных примесей для германия больше, чем акцепторных. В кремнии, наоборот, акцепторные примеси диффундируют быстрее. На рис. 17.21 показана диффузия в дырочный германий акцепторной и донорной примесей. Скорость диффузии донорной примеси больше, а поэтому она распространяется на большую глубину. При таком методе в наружном -слое распределение примеси неравномерно. Кроме того, около -перехода концентрация примеси изменяется плавно, что ухудшает характеристики прибора. Этих недостатков лишен -переход, полученный на германии или кремнии сплавно-диффузионным методом.

При сплавно-диффузионном методе на пластину германия с -проводимостью помещают шарик из сплава на основе свинца с примесью галлия (акцептор)

Рис. 17.22. Схема образования -переходов в германии при сплавно-диффузионном методе

При некоторых условиях эксплуатации стальных изделий и конструкций обычные физико-механические характеристики материал не удовлетворяют поставленным требованиям. В таких случаях стали легируют – добавляют при выплавке к исходному составу другие химические элементы (в основном – тоже металлы, хотя как будет показано далее, есть и исключения). В результате сталь становится прочнее, твёрже, устойчивее к внешним неблагоприятным факторам, хотя и теряет в своей пластичности, что в большинстве ситуаций ухудшает её обрабатываемость.

Технические требования к легированным сталям регламентированы ГОСТ 4543 (применительно к тонколистовому стальному прокату действует ещё ГОСТ 1542). В то же время ряд комплексно и сложнолегированных сталей производится согласно ТУ металлургических предприятий.

С формальной точки зрения, некоторые химические элементы, содержащиеся в обычных сталях, как конструкционных, так и обычного качества, тоже можно называть легирующими. К таким можно отнести, например, медь (до 0,2%), кремний (до 0,37%) и т.д.

Постоянными спутниками любой стали являются фосфор и сера . Тем не менее, металловеды относят их по большей части не к легирующим добавкам, а к примесям , хотя иногда процентное содержание другого легирующего элемента может быть даже меньшим.


Причина заключается в том, что любая примесь является следствием либо чистоты исходной руды (марганец), либо специфики металлургических процессов плавки (сера, фосфор). Теоретически выплавленная без меди, фосфора и серы сталь обладала бы такими же механическими свойствами. Легирование же имеет своей конечной целью именно повышение определённых технических характеристик стали. При этом фосфор и сера однозначно относятся к вредным, но неизбежным примесям . Наличие меди увеличивает пластичность, зато способствует налипанию поверхности металла , имеющего избыточную (более 0,3%) концентрацию меди на поверхность смежной детали. При работе конструкции в условиях интенсивного трения это является крупным недостатком.

Наличие химического элемента с концентрацией более 1% даёт основание вводить его условное обозначение в марку стали. Кроме вышеупомянутой стали 65Г, подобной чести удостаивается также и алюминий (присутствующий, в частности, в стали О8Ю). В данном случае алюминий вводится в обычную конструкционную сталь О8 с целью её раскисления , а то, что при этом несколько повышаются показатели её пластичности, является лишь удачным сопутствующим обстоятельством. Борирование стали обеспечивает ей повышенную последующую деформируемость , поэтому даже микродобавки бора в химический состав стали отмечаются соответственно изменённой её маркировкой (например, в стали 20Р присутствует всего 0,001…0,005 % бора).

В целом принято, что:

  • Стали, содержащие только один, намеренно вводимый в состав элемент;
  • Стали, в составе которых имеются иные, кроме углерода и марганца, химические элементы в количестве не более 1%

— легированными не считаются. С другой стороны, если в составе выплавляемого сплава процентное содержание железа не превышает 55%, то такой материал уже не может называться легированной сталью.

Общая классификация легирующих элементов в сталях

Преобладающее положение в списке легирующих элементов имеют металлы. Исключение составляют кремний и бор.

Наличие легирующих элементов оказывает преобладающее влияние на вид диаграммы состояния системы «железо-углерод», и на наличие/отсутствие химических соединений в конечном продукте (нитридов, карбидов и более сложных по формуле компонентов). Последние, в свою очередь существенно видоизменяют микроструктуру стали.

В связи с этим, легирующие сталь металлы подразделяются на две группы:

  1. Металлы, которые увеличивают область твёрдых растворов на основе γ-железа (аустенитная область на диаграмме состояния), что приводит к повышению разнообразия конечной микроструктуры легированной стали после её упрочняющей термообработки). К таким элементам относятся никель, марганец, кобальт, медь, а также азот.
  2. Металлы и химические элементы, наличие которых сужает γ-область , зато повышает прочность стали. К ним относят хром, вольфрам. ванадий, молибден, титан.

В процессе получения легированных сталей изменяются следующие закономерности в её свойствах.

Как известно, разные элементы обладают различной кристаллической структурой (для металлов это – гранецентрированная и объёмноцентрированная). Само же железо имеет объёмноцентрированную решётку.

При внедрении в сталь металла со сходным типом решётки область существования α-раствора (феррита) увеличивается за счёт соответствующего уменьшения аустенитной области. В результате микроструктура стабилизируется, что допускает более широкий выбор технологических процессов последующей термообработки.
Наоборот, при наличии в стали металла с другим типом решётки аустенитная область сужается. Такая сталь при своей последующей механической обработке будет более пластичной.
Легирование стали некоторыми металлами вообще невозможно. Это происходит, если разница в атомных диаметрах элементов превышает 15%.


Именно по этой причине такой металл как цинк вводят в качестве легирующей добавки только в цветные металлы и сплавы. Ограниченное применение для целей легирования стали находят также химические элементы, которые неспособны образовывать при выплавке устойчивые химические соединения с углеродом, железом и азотом.

Зависимость характеристик стали от насыщения её определёнными химическими элементами окончательно ещё не изучено. Это объясняется тем, что при комплексном легировании каждый компонент может взаимодействовать по разному с другими, причём такие изменения закономерному объяснению часто не поддаются. Поэтому вопросы целесообразности применения того либо иного легирующего элемента разрешаются экспериментальным путём.

Доказанными считаются следующие положения:

  • Эффективность процесса повышается при увеличении растворимости азота и углерода в легирующей добавке, и в основном железе;
  • Стабильность окончательных свойств стали повышается при увеличении размеров аустенитной зоны;
  • Качество стали, легированной металлами и элементами с меньшим, чем у железа порядковым номером (в таблице химических элементов Д. Менделеева) хуже, чем в противоположном случае;
  • Более тугоплавкие, по сравнению с железом, металлы повышают прочность стали при любых вариантах её дальнейшей термообработки.

Впрочем, вторичные взаимодействия, сильно зависящие от способа выплавки стали, могут существенно корректировать эти положения. Поэтому на данном этапе с уверенностью можно говорить лишь о влиянии конкретных легирующих элементов на свойства стали.

Влияние хрома

Хром – металл, особенно часто применяемый для целей легирования. Его добавляют как в конструкционные стали (например, 20Х, 40Х), так и в инструментальные (9ХС, Х12М). При этом конечные свойства легированной хромом стали сильно зависят от его содержания в ней. При низких (менее 0,5…0,7%) концентрациях структура стали становится боле грубой, и чувствительной к направлению её последующей обработки , особенно при прокатке и гибке в холодном состоянии. Ухудшается также равномерность распределения основных составляющих микроструктуры.

Как уже было отмечено выше, одной из главных целей легирования является формирование в стали карбидов металлов , прочность и твёрдость которых заметно выше, чем основного металла. Хром образует два вида карбидов: гексагональный Cr 7 C 3 и кубический Cr 23 С 6 , причём в обоих случаях прочность и хладостойкость стали возрастают. Особенностью карбидов хрома является присутствие в их структуре также и других элементов – железа и ванадия. В результате температура эффективного растворения снижается, что, в свою очередь, приводит к таким положительным особенностям сталей, легированных хромом, как прокаливаемость, возможность вторичного дисперсионного твердения и теплостойкость. Поэтому стали, легированные хромом, имеют увеличенную эксплуатационную стойкость при тяжёлых условиях своей эксплуатации.

Однако увеличение содержания хрома в стали приводит и к отрицательным последствиям. При его концентрации более 5…10% резко ухудшается карбидная однородность материала, что сопровождается нежелательными явлениями при её механической обработке : даже при нагреве пластичность стали невысока, поэтому при ковке с большими степенями деформации высокохромистые стали подвержены растрескиванию.

При чрезмерном карбидообразовании увеличивается также количество концентраторов напряжений , что негативно влияет на стойкость таких сталей к динамическим нагрузкам. Учитывая это, содержание хрома в сталях не должно превышать 5..6% .

Влияние вольфрама и молибдена

Действие этих легирующих добавок в сталях примерно одинаково, поэтому их рассматривают совместно. Вольфрам и молибден улучшают дисперсионное твердение сталей, что увеличивает их теплостойкость, особенно при длительной работе с повышенными температурами. Мартенситостареющие стали обладают уникальным комплексом свойств: они сочетают достаточную пластичность и вязкость с высокой поверхностной прочностью, а потому находят широкое применение в качестве инструментальных сталей , предназначенных для холодной объёмной штамповки с высокими степенями деформации. Причиной этому – формирование интерметаллидных соединений Fe 2 W и Fe 2 Mo 3 , которые способствуют последующему появлению специальных карбидов (чаще – хрома и ванадия). Поэтому часто, совместно с вольфрамом и молибденом стали легируют также и этими металлами. Примером служат инструментальные стали типа Х4В2М1Ф1, конструкционные 40ХВМФА и т.п.

Наиболее эффективно такое легирование для сталей, содержащих сравнительно большое количество углерода. Именно этим объясняется преимущественное применение сталей, содержащих вольфрам и молибден, для производства ответственных шестерён, валов и других деталей машин, работающих при сложных, резко циклических нагрузках. Наличие рассматриваемых легирующих компонентов улучшает закаливаемость сталей и способствует более устойчивым конечным характеристикам изделий, изготовленных из них.

Имеются и отрицательные стороны избыточного легирования данными металлами. Например, повышение концентрации молибдена более 3% способствует обезуглероживанию стали при нагреве, становится причиной хрупкого разрушения (особенно, если в составе такой стали присутствует в увеличенном — более 2% — количестве кремний). Предельное содержание вольфрама в стали – 10…12% — связано, главным образом, с резким повышением стоимости готового продукта.

Влияние ванадия

Ванадий чаще применяется как компонент сложного легирования. Его наличие придаёт легированным сталям более равномерную и благоприятную структуру , которая мало изменяется даже с термообработкой. Кроме того, ванадий стабилизирует γ-фазу, что увеличивает стойкость стали к напряжениям сдвига (как известно, именно при сдвиговых деформациях металлы имеют наименьшую прочность).

На твёрдость стали ванадий практически не влияет , это особенно заметно для конструкционных сталей, содержащих меньше углерода, чем инструментальные. В комплекснолегированных сталях ванадий увеличивает теплостойкость, что повышает их устойчивость от хрупкого разрушения. В этом смысле влияние ванадия противоположно влиянию молибдена. Особенностью термообработки легированных сталей, содержащих ванадий, считается невозможность выполнения высокого отпуска после закалки, поскольку последующая пластичность стали снижается. Поэтому в сталях, предназначенных для изготовления крупных деталей или поковок, процентное содержание ванадия ограничивается 3..4%.

Влияние кремния, марганца и кобальта

Кремний – единственный из неметаллов, «допущенный» к процессам легирования. Объясняется это двумя факторами – дешевизной элемента и однозначной зависимостью твёрдости от процентного содержания кремния в стали. Именно поэтому кремний часто применяется при выплавке недорогих низколегированных строительных сталей, а также сталей, для эксплуатационной долговечности которых важно оптимальное сочетание прочности и упругости. Чаще всего совместно с кремнием используется и марганец – примерами могут быть стали 09Г2С, 10ГС, 60С2 и т.д.

В инструментальных сталях кремний как легирующий компонент используется редко, и притом только в сочетании с другими металлами, которые нейтрализуют его отрицательные свойства – малую эксплуатационную пластичность и вязкость. Из таких сталей – в частности, 9ХС, 6Х3С и т.п. — изготавливают режущий и штамповый инструмент , для которого требуется сочетание высокой твёрдости и стойкости при резких нагрузках.

Как и кремний, кобальт при внедрении в структуру стали не образует собственных карбидов, зато в сложнолегированных сталях интенсифицирует их образование при отпуске. Поэтому кобальт применяется не самостоятельно, а в сочетании с такими металлами, как ванадий, хром, вольфрам , при этом, ввиду дефицитности кобальта его содержание обычно не превышает 2,5…3%.

Влияние никеля

Никель – единственный из легирующих компонентов сталей, который повышает её пластичность и снижает твёрдость . Поэтому одним никелем стали не легируют . Зато в сочетании с марганцем никель приводит к заметному повышению прокаливаемости стали, что очень важно при изготовлении крупных деталей машин, для которых важна высокая эксплуатационная долговечность. При этом наличие никеля снижает требования к точности соблюдения температурных интервалов термообработки.

Легирование никелем имеет и ряд особенностей. В частности, никель, не образуя собственных карбидов, способствует увеличению скоплений «чужих» карбидов по границам зёрен, в результате снижается теплостойкость, и повышается хрупкость в диапазоне 20…400 0 С. Поэтому процентное содержание никеля в легированных сталях строго увязывается с наличием в них марганца и хрома: при их наличии предельная концентрация никеля составляет 2%, а при их отсутствии – не более 0,5…1%.

Легированные стали для специальных областей использования содержат в себе и ряд других металлов (например, титан, алюминий и др.). Выбор вида стали диктуется эксплуатационными и финансовыми соображениями.

Думаю, мало кто в курсе, что вся возобновляемая энергетика сегодня зависит от работы исследовательских ядерных реакторов. Речь идет о получаемом в нем ядерно-легированном кремнии (ЯЛК), который используется для производства высоковольтных силовых полупроводников, без которых ВИЭ невозможны. А теперь подробнее.

12-пульсные выпрямители (висят слева) ультравысоковольтных линий электропередачи тоже являются важными потребителями ядерного-легированного кремния.


Если мы взглянем на электрическую схему любой солнечной или ветровой электростанции, то обязательно увидим там инверторное оборудование - электрические машины, преобразующие один постоянный ток в другой и в сетевой переменный. Они нужны для динамической организации потоков электроэнергии внутри СЭС или ветряка и стыковки с глобальной электросетью в правильном режиме.


Такие невзрачные ящики превращают мегаватты постоянного тока напряжением в несколько сотен вольт в 50 герц 10-35 киловольтного.


А внутри них трудятся вот такие ключевые сборки - это например однофазный H-мост мощностью 6 мегаватт, в нем стоит 8 IGCT тиристоров, о которых ниже.

Инверторы в свою очередь представляют собой наборы пассивных фильтров, рабочих индуктивностей и трансформаторов и главное - мощных электрических ключей. В энергетических инверторах сегодня трудятся два типа полупроводниковых ключей - IGBT транзисторы и IGСT тиристоры (кстати буквы I в этих приборах означают совсем разное:))


IGCT тиристор (таблетка слева) и управляющая им схема (справа). Тиристор изготавливается из круглой кремниевой пластинки


И вскрытый IGBT модуль чуть меньшей мощности. Здесь нет необходимости в сильноточном управлении затвором, а сам ключ набран из множества мелких кристаллов

Относительно небольшие полупроводниковые ключи сегодня имеют максимальные рабочие напряжения до 7000 вольт при рабочем токе до 5000 А, т.е. устройство размером с чайное блюдце способно коммутировать 35 мегаватт. Наряду с высочайшим кпд в районе 99% и относительно высокой частотой коммутации такие ключи во многом определили мир современной силовой электроники. Сегодня кроме возобновляемой энергетики и линий электропередач постоянного тока ультравысокого напряжения, основным потребителем такой продукции являются силовые приводы (электродвигатели) с высоким кпд и гибкой работой - например приводы электровозов, электромобилей Тесла или мощных станков.


Тиристор в корпусе (т.н. пресс-паке) и собственно кремниевая пластина, которая коммутирует ток.

Так вот, все полупроводниковые ключи с рабочими напряжениями выше 1600 вольт изготавливаются из кремния, который был облучен в ядерном реакторе - ядерно-легированном кремнии. В настоящее время порядка 150 тонн такого кремния в год получают в двух десятках облучательных установках, обычно на базе исследовательских реакторов. Производители разбросаны по всему миру, а объем этого рынка - примерно 150 миллионов долларов в год, и это один из самых больших мировых рынков изотопной продукции. В т.ч. несколько российских исследовательских реакторов (Томский политех, НИФХИ, Маяк, НИИАР) обеспечивают порядка 10% мировых поставок. Обычно организации, владеющие реакторами работают в связке с поставщиками кремния, которые подготавливают исходный материал, и обеспечивают разделку слитков на пластины и сбыт.


Слиток после облучения и отжига.

Ядерно-легированный кремний (или Neutron transmutation doped silicon) представляет собой ультра-чистый кремний, в котором нейтронным излучением реактора часть атомов изотопа 30Si трансмутировалась в атомы фосфора 31P, создав примесную проводимость n-типа. Традиционно такое легирование создается путем подмешивания очень небольшого количества фосфора в расплав кремния, но проблема в том, что при этом локальная концетрация допанта может отличатся на десятки процентов от среднего значения. В высоковольтных ключах такой разброс приводит к появлению «горячих пятен», где начинает течь гораздо больше тока, чем в среднем и транзистор или тиристор пробивает. Легирование путем нейтронного облучения позволяет путем некоторых ухищрений добиться равномерности лучше 5% отклонения от среднего значения - иногда и лучше 3%.


А это облучательные устройства датской фирмы Topsil, которая первой занялась коммерческим производством ЯЛК в конце 70х.

Для этого слиток чистого монокристаллического кремния помещают в ядерный реактор, по возможности заэкранировав от гамма-излучения и быстрых нейтронов, которые портят структуру кристалла. Для стандартного значения нейтронного потока в исследовательских реакторах (от 10 12 до 10 14 нейтрон на см 2 в секунду) требуется от пары часов до суток облучения что бы получить заданную проводимость кристалла кремния. При этом легирование происходит по реакции 30 Si + n -> 31 Si -> 31 P (период полураспада 2.6 часа), и полученный кремний необходимо выдержать пару суток, что бы его радиоактивность упала до безопасных уровней.


Связь между нейтронной дозой, проводимостью и получающимся содержанием допанта в ЯЛК

Во время облучения слиток вращают и перемещают вверх-вниз для равномерной засветки нейтронами. Кроме того на некоторых мощных реакторах применяется профилирующий поглотитель из кадмия или бора, который дополнительно выравнивает осевую неравномерность потока нейтронов.
Впрочем, сегодня существуют неядерные методы легирования кремния, которые позволяют получить почти ядерное качество, и они вытесняют ЯЛК из области 600-1600 вольт, где раньше так же применялся только ядерный кремний. Однако напряжения выше все равно не подвластны химическим методам, а в рамках общего тренда повышения удельной мощности напряжения силовой электроники постоянно ползут вверх, так что место для ЯЛК кремния есть.


Разные технологии получения легированных кремниевых пластин (CZ, CZ-EPI, FZ-PFZ и ядерный FZ-NTD) ориентированы на разные ниши, в т.ч. по напряжению, картинка от ведущего производителя кремния Topsil

Более того, аналитики прогнозируют рост потребления ЯЛК, связанным с ростом количества электромобилей с высоковольтной батареей (при напряжении батареи 800 вольт уже используются ключи с рабочим напряжением 1600 и выше вольт, на базе ЯЛ кремния). Некоторые оценки говорят о росте рынка с 150 до 500 тонн и выше в следующем десятилетии. Поэтому во многие вновь строящиеся реакторы еще на этапе проектирования закладывают каналы для получения ядерно-легированного кремния, надеясь таким образом снизить стоимость реактора для налогоплательщиков. Например такие каналы будут в МБИР и .


Впрочем пока инвертор Tesla Model S управляющий 300-киловаттным двигателем имеет в своем составе 84 IGBT транзистора с рабочим напряжением 600 вольт, скорее всего не имеющих отношения к ядерно-легированному кремнию. Однако это далеко не самое передовое решение на сегодня.

Так что «зеленое электрическое будущее» человечества неразрывно связано с ядерными технологиями, ядерными реакторами и прочими ужасно неэкологичным наследием 20-го века.

Вторым высокотехнологичным направлением работ с использованием исследовательского ядерного реактора ВВР-ц является ядерное (нейтронно-трансмутационное) легирование и радиационное модифицирование полупроводниковых материалов.

Общеизвестно, что для придания полупроводниковому кремнию нужных электрических свойств необходимо введение в кристалл примесных атомов. Необходимым условием при этом является однородность распределения примесных атомов по объему кристалла, что, в свою очередь, обеспечивает однородность распределения удельного электрического сопротивления. Обычные методы легирования не могут обеспечить требуемого уровня однородности распределения легирующей примеси в объеме монокристалла, особенно при выращивании монокристаллов больших размеров. Только метод ядерного (нейтронно-трансмутационного) легирования позволяет получать высококачественный монокристаллический кремний, отвечающий современным требованиям силовой электроники и электроэнергетики по однородности, стабильности и воспроизводимости свойств.

Метод основан на ядерных преврящениях, протекающих при захвате тепловых нейтронов ядрами изотопа кремний-30 с последующим образованием в монокристалле кремния изотропно распределенной легирующей примеси фосфор-31.

Отечественная технология ядерного (нейтронно-трансмутационного) легирования была разработана на базе исследовательского реактора ВВР-ц.

Были разработаны основные способы облучения длинномерных монокристаллических заготовок кремния, обеспецивающие равномерное и прецизионное "введение" легирующей примеси в зависимости от
параметров зоны облучения и конструкционных особенностей используемого типа ядерного реактора: статический режим, возвратно-поступательное перемещение контейнера с одновременным вращением, непрерывное прохождение столба контейнеров вдоль активной зоны с одновременным вращением, методы постобработки и режимы отжига облученных кристаллов. В настоящее время функционирует линия облучения слитков кремния диаметром до 85 мм с полным циклом технологических операций постобработки. Отклонение от равномерности распределения атомов примеси по диаметру слитка при этом не превышает 3-5%. Удельное электрическое сопротивление в зависимости от степени легирования, которое определяется флюенсом нейтронов, составляет от 15 до 600 Ом*см. Время жизни неосновных носителей заряда при этом превышает 100 мкс.

Ядерно-легированный кремний (ЯЛК) филиала НИФХИ аттестован рядом зарубежных фирм: Wacker , Freiberger (Германия), Topsil (Дания), СКД (Чехия). Для некоторых из них нами производятся постоянные поставки на контрактной основе.

Одновременно на базе реактора ВВР-ц создаются две новые технологические линии производства ЯЛК: линия легирования особо чистого монокристаллического кремния диаметром до 105 мм для фотоприемников и детекторов ядерного и космического излучения и линия для получения ЯЛК диаметром до 156 мм.

Вторым полупроводниковым материалом, для которого разработана технология легирования и модифицирования, является арсенид галлия. В основе метода легирования лежат ядерные реакции:

Ядерно-легированный арсенид галлия находит применение в солнечной энергетике и микроэлектронике, а также используется для изготовления детекторов излучения.

Радиационное модифицирование полуизолирующего арсенида галлия основано на оптимальном сочетании условий облучения и последующей термообработки. При этом неоднородность электрофизических и оптических свойств по объему кристалла уменьшается в несколько раз и не превышает 5%, повышается термостабильность и радиационная стабильность материала. Этим же способом возможно получение арсенида галлия с коэффициентом оптического поглощения менее 60 при длине волны 10,6 мкм, что в два раза меньше, чем у исходного. Такой материал используется для оптических систем лазеров. Образцы этого материала прошли аттестацию ряда фирм США, с которыми заключен контракт на создание технологии производства с последующими поставками продукции.

Технические характеристики ЯЛК, выпускаемого по технологии, разработанной в филиале НИФХИ им. Л.Я. Карпова.

 


Читайте:



Как разгадывать ребусы с буквами и

Как разгадывать ребусы с буквами и

Ребус - это особый вид загадок, в которых загаданные слова зашифрованы с помощью последовательности картинок, букв, цифр и других символов. Для...

Шкала электромагнитных волн Воздействие метровых волн

Шкала электромагнитных волн Воздействие метровых волн

Урок по физике в 11 классе «Путешествие по шкале электромагнитных волн» с использованием проектной технологии и ИКТ» Учитель физики МОУ...

Афоризмы и цитаты о жизни со смыслом

Афоризмы и цитаты о жизни со смыслом

Предлагаем вам почитать цитаты про жизнь. Здесь собраны фразы, афоризмы, цитаты о жизни великих людей и обычных. Среди цитат про жизнь есть цитаты...

Самые великие открытия и изобретения человечества

Самые великие открытия и изобретения человечества

За последние несколько веков мы совершили бесчисленное множество открытий, которые помогли значительно улучшить качество нашей повседневной жизни и...

feed-image RSS