Главная - Шри Раджниш Ошо
Неравномерное(переменное) движение. Средняя скорость. Расчет пути, скорости и времени движения Средняя скорость неравномерного движения формула

Из пункта A в пункт B выходит поезд. Половину всего пути поезд движется со скоростью 30 км/ч, а вторую половину пути – со скоростью 50 км/ч.

Чему равна средняя скорость движения поезда на участке AB ?

В реальной жизни очень сложно встретить равномерное движения, так как с такой большой точностью объекты материального мира не могут передвигаться, да еще и долгий промежуток времени, поэтому обычно на практике используются более реальное физическое понятие, характеризующее движение определенного тела в пространстве и времени.

Замечание 1

Неравномерное движение характеризуется тем, что тело может проходить одинаковый или разный путь за равные промежутки времени.

Для полного понимания этого вида механического движения вводится дополнительное понятие средней скорости.

Средняя скорость

Определение 1

Средняя скорость представляет собой физическую величину, которая равна отношению всего пути, пройденного телом, к полному времени движения.

Этот показатель рассматривается на определенном участке:

$\upsilon = \frac{\Delta S}{\Delta t}$

По данному определению средняя скорость является скалярной величиной, так как время и путь – скалярные величины.

Средняя скорость можно определять по уравнению перемещения:

Средняя скорость в подобных случаях считается векторной величиной, так как она ее можно определить через отношение векторной величины к скалярной.

Средняя скорость перемещения и средняя скорость прохождения пути характеризуют одинаковое движение, однако являются различными величинами.

В процессе расчета средней скорости обычно допускается ошибка. Она состоит в том, что понятие средней скорости иногда заменяется средней арифметической скоростью тела. Этот недочет допускается на разных участках движения тела.

Средняя скорость тела не может определяться через среднее арифметическое значение. Для решения задач используется уравнение для средней скорости. По нему можно найти среднюю скорость тела на определенном участке. Для этого весь путь, который пройден телом, разделить на общее время движения.

Неизвестную величину $\upsilon$ можно выразить через другие. Их обозначают:

$L_0$ и $\Delta t_0$.

Получается формула, согласно которой идет поиск неизвестной величины:

$L_0 = 2 ∙ L$, а $\Delta t_0 = \Delta t_1 + \Delta t_2$.

При решении длинной цепочки уравнений можно прийти к изначальной версии поиска средней скорости тела на определенном участке.

При непрерывном движении также непрерывно изменяется скорость тела. Подобное движение рождает закономерность, при которой скорость в любой последующих точках траектории отличается от скорости объекта в предыдущей точке.

Мгновенная скорость

Мгновенной скоростью называют скорость в данный отрезок времени в определенной точке траектории.

Средняя скорость тела будет сильнее отличаться от мгновенной скорости в случаях, когда:

  • она больше промежутка времени $\Delta t$;
  • она меньше промежутка времени.

Определение 2

Мгновенная скорость – это физическая величина, которая равна отношению небольшого перемещения на определенном участке траектории или пройденного пути телом, к небольшому промежутку времени, за которое это перемещение совершалось.

Мгновенная скорость становится векторной величиной, когда речь идет о средней скорости перемещения.

Мгновенная скорость становится скалярной величиной, когда говорят о средней скорости прохождения пути.

При неравномерном движении изменение скорости тела происходит за равные промежутки времени на равную величину.

Равнопеременное движение тела возникает в момент, когда скорость объекта за любые равные промежутки времени изменяется на равную величину.

Виды неравномерного движения

При неравномерном движении постоянно меняется скорость тела. Различают основные виды неравномерного движения :

  • движение по окружности;
  • движение тела, брошенного вдаль;
  • равноускоренное движение;
  • равнозамедленное движение;
  • равнопеременное движение
  • неравнопеременное движение.

Скорость может изменяться по численному значению. Подобное движение также считают неравномерным. Особенным случаем неравномерного движения считают равноускоренное движение.

Определение 3

Неравнопеременным движением называют такое движение тела, когда скорость объекта за любые неравные промежутки времени не меняется на определенную величину.

Равнопеременное движение характеризуется возможностью увеличения или уменьшения скорости тела.

Равнозамедленным называют движение, когда скорость тела уменьшается. Равноускоренным называют движение, при котором скорость тела увеличивается.

Ускорение

Для неравномерного движения введена еще одна характеристика. Эта физическая величина называется ускорением.

Ускорением называют векторную физическую величину, равная отношению изменения скорости тела ко времени, когда это изменение происходило.

$a=\frac{\upsilon }{t}$

При равнопеременном движении нет зависимости ускорения от изменения скорости тела, а также от времени изменения этой скорости.

Ускорение показывает на количественное изменение скорости тела за определенную единицу времени.

Для того, чтобы получить единицу ускорения, необходимо в классическую формулу для ускорения подставить единицы скорости и времени.

В проекции на координатную ось 0X уравнение примет следующий вид:

$υx = υ0x + ax ∙ \Delta t$.

Если знать ускорение тела и его начальную скорость, можно заранее найти скорость в любой заданный момент времени.

Физическая величина, которая равна отношению пути, пройденного телом за конкретный промежуток времени, к длительности подобного промежутка, является средней путевой скоростью. Средняя путевая скорость выражается в виде:

  • скалярной величины;
  • неотрицательной величины.

Средняя скорость представлена в форме вектора. Она направлена туда, куда направлено перемещение тела за определенный промежуток времени.

Модуль средней скорости равняется средней путевой скорости в случаях, если тело все это время движется в одном направлении. Модуль средней скорости уменьшается к средней путевой скорости, если в процессе движения тело изменяет направление своего движения.

Мгновенная скорость:

В окружающем нас мире равномерное движение встречается нечасто. Обычно скорость тела изменяется с течением времени. Такое движение называют неравномерным. Для характеристики неравномерного движения называют физическую величину, равную отношению перемещения тела ко времени, за которое это перемещение произошло, и называют скоростным перемещением.

На графике наклон прямой, соединяющий две точки представлен отношением и показывает, как быстро изменяется положение тела за время .

Если движение тела не является прямолинейным, то пройденный телом путь будет больше, чем его перемещение. Поэтому для вычисления средней скорости находят отношение пути, пройденного телом ко времени:

В этом случае среднюю скорость называют путевой . В отличие от скорости перемещения, путевая скорость – скаляр. Например, средняя скорость (перемещения) машины, вернувшейся в начальную точку, равна нулю. Но при этом ее средняя путевая скорость отлична от нуля.


Зная среднюю скорость тела на каком-либо участке пути, нельзя определить его положение в любой момент времени. При движении тело проходит последовательно все точки траектории. В каждой точке оно находится в определенные моменты времени и имеет определенную скорость. Скорость тела в данный момент или в данной точке траектории называется мгновенной скоростью.

Мгновенную скорость можно представить как среднюю скорость за малый промежуток времени. Мгновенная скорость равна отношению малого перемещения на участке траектории к малому промежутку времени, за которое было совершенно это перемещение.

Мгновенную скорость можно определить и с помощью графика движения. Мгновенная скорость тела в любой точке на графике определяется наклоном касательной к кривой соответствующей точке . Чтобы определить мгновенную скорость в определенной точке, нужно взять любые две точки на прямой, которая является касательной к графику движения, и вычислить среднюю скорость для выбранного отрезка. Мгновенная скорость тела в данной точке будет численно равна тангенсу угла наклона касательной к графику функции.

Тангенс угла наклона касательной численно равен мгновенной скорости в этой точке

При равномерном движении модуль перемещения численно равен площади под графиком скорости. При неравномерном движении это равенство также выполняется. Можно рассмотреть движение тела в отдельные промежутки времени . Если выбирать все меньше и меньше, то скорость на каждом промежутке будет меняться все меньше и меньше. Тогда для каждого промежутка времени площади под графиком равна произведению высоты (скорости) на основание (промежуток времени), то есть площадь равна перемещению тела за этот промежуток времени. А площадь под всем графиком равна сумме площадей для каждого промежутка времени. Таким образом, перемещение при неравномерном движении численно равно площади под графиком скорости.

Часто среднюю скорость находят по графику зависимости модуля скорости от времени. Площадь под графиком скорости определяет пройденный телом путь. Поэтому в соответствии с определением средней скорости по графику можно подобрать такое значение постоянной скорости, которое позволит пройти то же расстояние и за то же время, что и при движении с переменной скоростью.

Скатывание тела по наклонной плоскости (рис. 2);

Рис. 2. Скатывание тела по наклонной плоскости ()

Свободное падение (рис. 3).

Все эти три вида движения не являются равномерными, то есть в них изменяется скорость. На этом уроке мы рассмотрим неравномерное движение.

Равномерное движение – механическое движение, при котором тело за любые равные отрезки времени проходит одинаковое расстояние (рис. 4).

Рис. 4. Равномерное движение

Неравномерным называется движение , при котором тело за равные промежутки времени проходит неравные пути.

Рис. 5. Неравномерное движение

Основная задача механики – определить положение тела в любой момент времени. При неравномерном движении скорость тела меняется, следовательно, необходимо научиться описывать изменение скорости тела. Для этого вводятся два понятия: средняя скорость и мгновенная скорость.

Факт изменения скорости тела при неравномерном движении не всегда необходимо учитывать, при рассмотрении движении тела на большом участке пути в целом (нам не важна скорость в каждый момент времени) удобно ввести понятие средней скорости.

Например, делегация школьников добирается из Новосибирска в Сочи поездом. Расстояние между этими городами по железной дороге составляет приблизительно 3300 км. Скорость поезда, когда он только выехал из Новосибирска составляла , значит ли это, что посередине пути скорость была такой же, а на подъезду к Сочи [М1] ? Можно ли, имея только эти данные, утверждать, что время движения составит (рис. 6). Конечно нет, так как жители Новосибирска знают, что до Сочи ехать приблизительно 84 ч.

Рис. 6. Иллюстрация к примеру

Когда рассматривается движение тела на большом участке пути в целом, удобнее ввести понятие средней скорости.

Средней скоростью называют отношение полного перемещения, которое совершило тело, ко времени, за которое совершено это перемещение (рис. 7).

Рис. 7. Средняя скорость

Данное определение не всегда является удобным. Например, спортсмен пробегает 400 м – ровно один круг. Перемещение спортсмена равно 0 (рис. 8), однако мы понимаем, что его средняя скорость нулю равна быть не может.

Рис. 8. Перемещение равно 0

На практике чаще всего используется понятие средней путевой скорости.

Средняя путевая скорость – это отношение полного пути, пройденного телом, ко времени, за которое путь пройден (рис. 9).

Рис. 9. Средняя путевая скорость

Существует еще одно определение средней скорости.

Средняя скорость – это та скорость, с которой должно двигаться тело равномерно, чтобы пройти данное расстояние за то же время, за которое оно его прошло, двигаясь неравномерно.

Из курса математики нам известно, что такое среднее арифметическое. Для чисел 10 и 36 оно будет равно:

Для того чтобы узнать возможность использования этой формулы для нахождения средней скорости, решим следующую задачу.

Задача

Велосипедист поднимается со скоростью 10 км/ч на склон, затрачивая на это 0,5 часа. Далее со скоростью 36 км/ч спускается вниз за 10 минут. Найдите среднюю скорость велосипедиста (рис. 10).

Рис. 10. Иллюстрация к задаче

Дано: ; ; ;

Найти:

Решение:

Так как единица измерения данных скоростей – км/ч, то и среднюю скорость найдем в км/ч. Следовательно, данные задачи не будем переводить в СИ. Переведем в часы.

Средняя скорость равна:

Полный путь () состоит из пути подъема на склон () и спуска со склона ():

Путь подъема на склон равен:

Путь спуска со склона равен:

Время, за которое пройден полный путь, равно:

Ответ: .

Исходя из ответа задачи, видим, что применять формулу среднего арифметического для вычисления средней скорости нельзя.

Не всегда понятие средней скорости полезно для решения главной задачи механики. Возвращаясь к задаче про поезд, нельзя утверждать, что если средняя скорость на всем пути поезда равна , то через 5 часов он будет находиться на расстоянии от Новосибирска.

Среднюю скорость, измеренную за бесконечно малый промежуток времени, называют мгновенной скоростью тела (для примера: спидометр автомобиля (рис. 11) показывает мгновенную скорость).

Рис. 11. Спидометр автомобиля показывает мгновенную скорость

Существует еще одно определение мгновенной скорости.

Мгновенная скорость – скорость движения тела в данный момент времени, скорость тела в данной точке траектории (рис. 12).

Рис. 12. Мгновенная скорость

Для того чтобы лучше понять данное определение, рассмотрим пример.

Пусть автомобиль движется прямолинейно по участку шоссе. У нас есть график зависимости проекции перемещения от времени для данного движения (рис. 13), проанализируем данный график.

Рис. 13. График зависимости проекции перемещения от времени

На графике видно, что скорость автомобиля не постоянная. Допустим, необходимо найти мгновенную скорость автомобиля через 30 секунд после начала наблюдения (в точке A ). Пользуясь определением мгновенной скорости, найдем модуль средней скорости за промежуток времени от до . Для этого рассмотрим фрагмент данного графика (рис. 14).

Рис. 14. График зависимости проекции перемещения от времени

Для того чтобы проверить правильность нахождения мгновенной скорости, найдем модуль средней скорости за промежуток времени от до , для этого рассмотрим фрагмент графика (рис. 15).

Рис. 15. График зависимости проекции перемещения от времени

Рассчитываем среднюю скорость на данном участке времени:

Получили два значения мгновенной скорости автомобиля через 30 секунд после начала наблюдения. Точнее будет то значение, где интервал времени меньше, то есть . Если уменьшать рассматриваемый интервал времени сильнее, то мгновенная скорость автомобиля в точке A будет определяться более точно.

Мгновенная скорость – это векторная величина. Поэтому, кроме ее нахождения (нахождения ее модуля), необходимо знать, как она направлена.

(при ) – мгновенная скорость

Направление мгновенной скорости совпадает с направлением перемещения тела.

Если тело движется криволинейно, то мгновенная скорость направлена по касательной к траектории в данной точке (рис. 16).

Задание 1

Может ли мгновенная скорость () изменяться только по направлению, не изменяясь по модулю?

Решение

Для решения рассмотрим следующий пример. Тело движется по криволинейной траектории (рис. 17). Отметим на траектории движения точку A и точку B . Отметим направление мгновенной скорости в этих точках (мгновенная скорость направлена по касательной к точке траектории). Пусть скорости и одинаковы по модулю и равны 5 м/с.

Ответ: может.

Задание 2

Может ли мгновенная скорость меняться только по модулю, не меняясь по направлению?

Решение

Рис. 18. Иллюстрация к задаче

На рисунке 10 видно, что в точке A и в точке B мгновенная скорость направлена одинаково. Если тело движется равноускоренно, то .

Ответ: может.

На данном уроке мы приступили к изучению неравномерного движения, то есть движения с изменяющейся скоростью. Характеристиками неравномерного движения являются средняя и мгновенная скорости. Понятие о средней скорости основано на мысленной замене неравномерного движения равномерным. Иногда понятие средней скорости (как мы увидели) является очень удобным, но для решения главной задачи механики оно не подходит. Поэтому вводится понятие мгновенной скорости.

Список литературы

  1. Г.Я. Мякишев, Б.Б. Буховцев, Н.Н. Сотский. Физика 10. - М.: Просвещение, 2008.
  2. А.П. Рымкевич. Физика. Задачник 10-11. - М.: Дрофа, 2006.
  3. О.Я. Савченко. Задачи по физике. - М.: Наука, 1988.
  4. А.В. Перышкин, В.В. Крауклис. Курс физики. Т. 1. - М.: Гос. уч.-пед. изд. мин. просвещения РСФСР, 1957.
  1. Интернет-портал «School-collection.edu.ru» ().
  2. Интернет-портал «Virtulab.net» ().

Домашнее задание

  1. Вопросы (1-3, 5) в конце параграфа 9 (стр. 24); Г.Я. Мякишев, Б.Б. Буховцев, Н.Н. Сотский. Физика 10 (см. список рекомендованной литературы)
  2. Можно ли, зная среднюю скорость за определенный промежуток времени, найти перемещение, совершенное телом за любую часть этого промежутка?
  3. Чем отличается мгновенная скорость при равномерном прямолинейном движении от мгновенной скорости при неравномерном движении?
  4. Во время езды на автомобиле через каждую минуту снимались показания спидометра. Можно ли по этим данным определить среднюю скорость движения автомобиля?
  5. Первую треть трассы велосипедист ехал со скоростью 12 км в час, вторую треть - со скоростью 16 км в час, а последнюю треть - со скоростью 24 км в час. Найдите среднюю скорость велосипеда на протяжении всего пути. Ответ дайте в км/час

При неравномерном движении тело может за равные промежутки времени проходить как равные, так и разные пути.

Для описания неравномерного движения вводится понятие средней скорости .

Средняя скорость, по данному определению, величина скалярная потому, что путь и время величины скалярные.

Однако среднюю скорость можно определять и через перемещение согласно уравнению

Средняя скорость прохождения пути и средняя скорость перемещения – это две разные величины, которые могут характеризовать одно и то же движение.

При расчете средней скорости очень часто допускается ошибка, состоящая в том, что понятие средней скорости подменяется понятием среднего арифметического скоростей тела на разных участках движения. Чтобы показать неправомерность такой подмены рассмотрим задачу и проанализируем ее решение.

Движение поезда на участке AC и на участке CB равномерное. Взглянув на текст задачи, нередко сразу хочется дать ответ: υ ср = 40 км/ч.

Да потому, что нам кажется, что для вычисления средней скорости вполне подходит формула, используемая для расчета среднего арифметического.

Давайте разберемся: можно ли использовать эту формулу и рассчитывать среднюю скорость путем нахождения полусуммы заданных скоростей.

Для этого рассмотрим несколько иную ситуацию.

Допустим, мы правы и средняя скорость действительно равна 40 км/ч.

Тогда решим другую задачу.

Как видно, тексты задач очень похожи, есть только «очень маленькая» разница.

Если в первом случае речь идет о половине пути, то во втором случае речь идет о половине времени.

Очевидно, что точка C во втором случае находится несколько ближе к точке A , чем в первом случае, и ожидать одинаковых ответов в первой и второй задаче, вероятно, нельзя.

Если мы, решая вторую задачу, так же дадим ответ, что средняя скорость равна полусумме скоростей на первом и втором участке, мы не можем быть уверены, что мы решили задачу правильно. Как быть?

Выход из положения следующий: дело в том, что средняя скорость не определяется через среднее арифметическое . Есть определяющее уравнение для средней скорости, согласно которому для нахождения средней скорости на некотором участке, надо весь путь, пройденный телом, поделить на все время движения:

Начинать решение задачи нужно именно с формулы, определяющей среднюю скорость, даже если нам кажется, что мы в каком-то случае можем использовать более простую формулу.

Будем двигаться от вопроса к известным величинам.

Неизвестную величину υ ср выражаем через другие величины – L 0 и Δ t 0 .

Оказывается, что обе эти величины неизвестны, поэтому мы должны выразить их через другие величины. Например, в первом случае: L 0 = 2 ∙ L , а Δ t 0 = Δ t 1 + Δ t 2 .

Подставим эти величины, соответственно, в числитель и знаменатель исходного уравнения.

Во втором случае мы поступаем точно так же. Нам не известен весь путь и все время. Выражаем их: и

Очевидно, что время движения на участке AB во втором случае и время движения на участке AB в первом случае различны.

В первом случае, поскольку нам неизвестны времена и мы попытаемся выразить и эти величины: а во втором случае мы выражаем и :

Подставляем выраженные величины в исходные уравнения.

Таким образом, в первой задаче имеем:

После преобразования получаем:

Во втором случае получаем а после преобразования:

Ответы, как и было предсказано, различны, но во втором случае мы получили, что средняя скорость действительно равняется полусумме скоростей.

Может возникнуть вопрос, а почему сразу нельзя воспользоваться этим уравнением и дать такой ответ?

Дело в том, что записав, что средняя скорость на участке AB во втором случае равна полусумме скоростей на первом и на втором участках, мы бы представили не решение задачи, а готовый ответ . Решение же, как видно, достаточно длинное, и начинается оно с определяющего уравнения. То, что мы в данном случае получили уравнение, которое хотели использовать изначально – чистая случайность.

При неравномерном движении скорость тела может непрерывно меняться. При таком движении скорость в любой последующей точке траектории будет отличаться от скорости в предыдущей точке.

Скорость тела в данный момент времени и в данной точке траектории называют мгновенной скоростью .

Чем больше промежуток времени Δ t , тем средняя скорость больше отличается от мгновенной. И, наоборот, чем меньше промежуток времени, тем меньше средняя скорость отличается от интересующей нас мгновенной скорости.

Определим мгновенную скорость как предел, к которому стремится средняя скорость на бесконечно малом промежутке времени :

Если речь идет о средней скорости перемещения, то мгновенная скорость является величиной векторной:

Если речь идет о средней скорости прохождения пути, то мгновенная скорость является величиной скалярной:

Часто встречаются случаи, когда при неравномерном движении скорость тела меняется за равные промежутки времени на одну и ту же величину.


При равнопеременном движении скорость тела может, как уменьшаться, так и увеличиваться.

Если скорость тела увеличивается, то движение называется равноускоренным, а если уменьшается – равнозамедленным.

Характеристикой равнопеременного движения служит физическая величина, называемая ускорением .


Зная ускорение тела и его начальную скорость, можно найти скорость в любой наперед заданный момент времени:

В проекции на координатную ось 0X уравнение примет вид: υ x = υ 0 x + a x ∙ Δ t .

 


Читайте:



Корсары: Город Потерянных Кораблей

Корсары: Город Потерянных Кораблей

Версия для печати страницы: Все самое свежее об играх читайте и смотрите на Игру можно пройти за трёх персонажей: Питер Блад, Ян Стейс и Диего...

Репнин Николай Васильевич - биография, факты из жизни, фотографии, справочная информация

Репнин Николай Васильевич - биография, факты из жизни, фотографии, справочная информация

В 1749 г. произведен в прапорщики, через 2 года стал подпоручиком гвардии. Затем Николай Васильевич долго жил в Германии, где получил "дельное...

История распространение волн в фотонных кристаллах история

История распространение волн в фотонных кристаллах история

Я не могу претендовать на то, чтобы беспристрастно судить о цветах. Я радуюсь сверкающим оттенкам и искренне сожалею о скудных коричневых цветах....

Секретные арктические базы третьего рейха Нацисткий «мост»: таймыр -лиинахамари, или что укрыто в штольнях девкиной заводи

Секретные арктические базы третьего рейха Нацисткий «мост»: таймыр -лиинахамари, или что укрыто в штольнях девкиной заводи

Детали похода могли быть несколько иными, но «534-я» обязательно должна была зайти в обе секретные арктические базы, находящиеся в глубоком тылу...

feed-image RSS