Главная - Степанова Наталья
Этапы эволюции звезд. Жизненный цикл звезды - описание, схема и интересные факты От чего зависит процесс эволюции звезд

В начале XX века, Герцшпрунг и Рассел нанесли на диаграмму «Абсолютная звёздная величина» - «спектральный класс» различные звёзды, и оказалось, что большая их часть сгруппирована вдоль узкой кривой. Позже эта диаграмма (ныне носящая название диаграмма Герцшпрунга - Рассела) оказалась ключом к пониманию и исследованиям процессов, происходящих внутри звезды.

Диаграмма даёт возможность (хотя и не очень точно) найти абсолютную величину по спектральному классу. Особенно для спектральных классов O-F. Для поздних классов это осложняется необходимостью сделать выбор между гигантом и карликом. Однако определённые различия в интенсивности некоторых линий позволяют уверенно сделать этот выбор.

Большинство звезд (около 90 %), располагаются на диаграмме вдоль длинной узкой полосы, называемой главной последовательностью . Она протянулась из верхнего левого угла (от голубых сверхгигантов) в нижний правый угол (до красных карликов). К звездам главной последовательности относится Солнце, светимость которого принимают за единицу.

Точки, соответствующие гигантам и сверхгигантам, располагаются над главной последовательностью справа, а соответствующие белым карликам – в нижнем левом углу, под главной последовательностью.

В настоящее время выяснилось, что звезды главной последовательности – нормальные звезды, похожие на Солнце, в которых происходит сгорание водорода в термоядерных реакциях. Главная последовательность – это последовательность звезд разной массы. Самые большие по массе звезды располагаются в верхней части главной последовательности и являются голубыми гигантами. Самые маленькие по массе звезды – карлики. Они располагаются в нижней части главной последовательности. Параллельно главной последовательности, но несколько ниже ее располагаются субкарлики . Они отличаются от звезд главной последовательности меньшим содержанием металлов.

Большую часть своей жизни звезда проводит на главной последовательности. В этот период ее цвет, температура, светимость и другие параметры почти не меняются. Но до того, как звезда достигнет этого устойчивого состояния, еще в состоянии протозвезды, она имеет красный цвет и в течение короткого времени большую светимость, чем будет иметь на главной последовательности.

Звезды большой массы (сверхгиганты) щедро расходуют свою энергию, и эволюция таких звезд продолжается всего сотни миллионов лет. Поэтому голубые сверхгиганты являются молодыми звездами.

Стадии эволюции звезды после главной последовательности также короткие. Типичные звезды становятся при этом красными гигантами, очень массивные звезды – красными сверхгигантами. Звезда быстро увеличивается в размере, и ее светимость возрастает. Именно эти фазы эволюции отражаются на диаграмме Герцшпрунга-Рассела.

Каждая звезда проводит на главной последовательности около 90% времени своей жизни. В этот период основными источниками энергии звезды являются термоядерные реакции превращения водорода в гелий в её центре. Исчерпав данный источник, звезда смещается в область гигантов, где проводит около 10% времени своей жизни. В это время основным источником выделения энергии звезды является превращение водорода в гелий в слое, окружающем плотное гелиевое ядро. Это так называемая стадия красного гиганта .

Рождение звезд

Эволюция звезды начинается в гигантском молекулярном облаке, также называемом звёздной колыбелью, в котором в результате гравитационной неустойчивости первичная флуктуация плотности начинает разрастаться. Большая часть «пустого» пространства в галактике в действительности содержит от 0,1 до 1 молекулы на см³. Молекулярное облако же имеет плотность около миллиона молекул на см³. Масса такого облака превышает массу Солнца в 100 000-10 000 000 раз благодаря своему размеру: от 50 до 300 световых лет в поперечнике.

При коллапсе молекулярное облако разделяется на части, образуя всё более и более мелкие сгустки. Фрагменты с массой меньше ~100 солнечных масс способны сформировать звезду. В таких формированиях газ нагревается по мере сжатия, вызванного высвобождением гравитационной потенциальной энергии, и облако становится протозвездой, трансформируясь во вращающийся сферический объект.

Звёзды на начальной стадии своего существования, как правило, скрыты от взгляда внутри плотного облака пыли и газа. Часто силуэты таких звёздообразующих коконов можно наблюдать на фоне яркого излучения окружающего газа. Такие образования получили название глобул Бока.

Очень малая доля протозвёзд не достигает достаточной для реакций термоядерного синтеза температуры. Такие звёзды получили название «коричневые карлики», их масса не превышает одной десятой солнечной. Такие звёзды быстро умирают, постепенно остывая за несколько сотен миллионов лет. В некоторых наиболее массивных протозвёздах температура из-за сильного сжатия может достигнуть 10 миллионов К, делая возможным синтез гелия из водорода. Такая звезда начинает светиться. Начало термоядерных реакций устанавливает гидростатическое равновесие, предотвращая ядро от дальнейшего гравитационного коллапса. Далее звезда может существовать в стабильном состоянии.

Начальная стадия эволюции звёзд

На диаграмме Герцшпрунга - Рассела появившаяся звезда занимает точку в правом верхнем углу: у неё большая светимость и низкая температура. Основное излучение происходит в инфракрасном диапазоне. До нас доходит излучение холодной пылевой оболочки. В процессе эволюции положение звезды на диаграмме будет меняться. Единственным источником энергии на этом этапе служит гравитационное сжатие. Поэтому звезда достаточно быстро перемещается параллельно оси ординат.

Температура поверхности не меняется, а радиус и светимость уменьшаются. Температура в центре звезды повышается, достигая величины, при которой начинаются реакции с лёгкими элементами: литием, бериллием, бором, которые быстро выгорают, но успевают замедлить сжатие. Трек поворачивается параллельно оси ординат, температура на поверхности звезды повышается, светимость остаётся практически постоянной. Наконец, в центре звезды начинаются реакции образования гелия из водорода (горение водорода). Звезда выходит на главную последовательность.

Продолжительность начальной стадии определяется массой звезды. Для звёзд типа Солнца она около 1 млн лет, для звезды массой 10 M ☉ примерно в 1000 раз меньше, а для звезды массой 0,1 M в тысячи раз больше.

Стадия главной последовательности

На стадии главной последовательности звезда светит за счёт выделения энергии в ядерных реакциях превращения водорода в гелий. Запас водорода обеспечивает светимость звезды массой 1M ☉ примерно в течение 10 10 лет. Звезды большей массы расходуют водород быстрее: так, звезда массой в 10 M израсходует водород менее, чем за 10 7 лет (светимость пропорциональна четвертой степени массы).

Звёзды малой массы

По мере выгорания водорода центральные области звезды сильно сжимаются.

Звёзды большой массы

После выхода на главную последовательность эволюция звезды большой массы (>1,5 M ☉ ) определяется условиями горения ядерного горючего в недрах звезды. На стадии главной последовательности это - горение водорода, но в отличие от звёзд малой массы в ядре доминируют реакции углеродно-азотного цикла. В этом цикле атомы C и N играют роль катализаторов. Скорость выделения энергии в реакциях такого цикла пропорциональна T 17 . Поэтому в ядре образуется конвективное ядро, окружённое зоной, в которой перенос энергии осуществляется излучением.

Светимость звёзд большой массы намного превышает светимость Солнца, и водород расходуется значительно быстрее. Связано это и с тем, что температура в центре таких звёзд тоже намного выше.

По мере уменьшения доли водорода в веществе конвективного ядра темп выделения энергии уменьшается. Но поскольку темп выделения определяется светимостью, ядро начинает сжиматься, и темп выделения энергии остаётся постоянным. Звезда же при этом расширяется и переходит в область красных гигантов.

Стадия зрелости звёзд

Звёзды малой массы

К моменту полного выгорания водорода в центре звезды малой масс образуется небольшое гелиевое ядро. В ядре плотность вещества и температура достигают значений 10 9 кг/м 3 и 10 8 K соответственно. Горение водорода происходит на поверхности ядра. Поскольку температура в ядре повышается, темп выгорания водорода увеличивается, увеличивается светимость. Лучистая зона постепенно исчезает. А из-за увеличения скорости конвективных потоков внешние слои звезды раздуваются. Размеры и светимость её возрастают - звезда превращается в красный гигант.

Звёзды большой массы

Когда водород у звезды большой массы полностью исчерпывается, в ядре начинает идти тройная гелиевая реакция и одновременно реакция образования кислорода (3He=>C и C+He=>О). В то же время на поверхности гелиевого ядра начинает гореть водород. Появляется первый слоевой источник.

Запас гелия исчерпывается очень быстро, так как в описанных реакциях в каждом элементарном акте выделяется сравнительно немного энергии. Картина повторяется, и в звезде появляются уже два слоевых источника, а в ядре начинается реакция C+C=>Mg.

Эволюционный трек при этом оказывается очень сложным. На диаграмме Герцшпрунга-Расселла звезда перемещается вдоль последовательности гигантов или (при очень большой массе в области сверхгигантов) периодически становится цефеидой.


Конечные стадии эволюции звёзд

Старые звёзды малой массы

У звезды малой массы, в конце концов, скорость конвективного потока на каком-то уровне достигает второй космической скорости, оболочка отрывается, и звезда превращается в белый карлик, окружённый планетарной туманностью.

Гибель звёзд большой массы

В конце эволюции звезда большой массы имеет очень сложное строение. В каждом слое свой химический состав, в нескольких слоевых источниках протекают ядерные реакции, а в центре образуется железное ядро.

Ядерные реакции с железом не протекают, так как они требуют затраты (а не выделения) энергии. Поэтому железное ядро быстро сжимается, температура и плотность в нем увеличиваются, достигая фантастических величин - температуры 10 9 K и плотности 10 9 кг/м3.

В этот момент начинаются два важнейших процесса, идущие в ядре одновременно и очень быстро (по-видимому, за минуты). Первый заключается в том, что при столкновениях ядер атомы железа распадаются на 14 атомов гелия, второй - в том, что электроны «вдавливаются» в протоны, образуя нейтроны. Оба процесса связаны с поглощением энергии, и температура в ядре (также и давление) мгновенно падает. Внешние слои звезды начинают падение к центру.

Падение внешних слоёв приводит к резкому повышению температуры в них. Начинают гореть водород, гелий, углерод. Это сопровождается мощным потоком нейтронов, который идёт из центрального ядра. В результате происходит мощнейший ядерный взрыв, сбрасывающий внешние слои звезды, уже содержащие все тяжёлые элементы, вплоть до калифорния. По современным воззрениям все атомы тяжёлых химических элементов (т.е. более тяжёлых, чем гелий) образовались во Вселенной именно во вспышках сверхновых. На месте взорвавшейся сверхновой остаётся в зависимости от массы взорвавшейся звезды либо нейтронная звезда, либо чёрная дыра.

УРОК №26. ЖИЗНЕННЫЙ ПУТЬ РЯДОВОЙ ЗВЕЗДЫ.

1. Бесшабашная юность - начальная стадия эволюции звезд.

- гравитационное сжатие;

- протозвезды;

- области звездообразования;

- протозвезды на диаграмме Г-Р;

2. Стабильная зрелость - стадия главной последовательности.

- механизм саморегуляции звезд;

-модели звезд различных классов;

3. Неспокойная старость – уход с главной последовательности.

- красные гиганты и белые карлики;

- бесславный конец.

1. Начальная стадия эволюции звезд

Согласно современным представлениям, звезды рождаются из газопылевой диффузной среды в результате процесса гравитационного сжатия отдельных газовых облаков под действием собственного тяготения. Температура вещества при переходе от молекулярных облаков к звездам возрастает в миллионы раз, а плотность – в 1020 раз.

Гравитационное сжатие начинается в наиболее плотных областях межзвездного газа. Сжатие возникает как следствие гравитационной неустойчивости, идея которой была высказана еще Ньютоном. Позже Джинс показал, что бесконечная однородная среда неустойчива, и из простого физического критерия определил минимальные размеры облаков, в которых может начаться самопроизвольное сжатие. Этот критерий - отрицательная полная энергия облака. Е0=Еграв+Етепл<0. При этом максимальный размер устойчивого облака Lj и его масса Mj зависит от плотности частиц n и их температуры T :https://pandia.ru/text/78/308/images/image002_210.gif" width="109" height="31 src=">. Массы таких облаков должны быть не меньше 1000 масс Солнца. Однако звезд с такими массами нет. Это связано с тем, что как только начинается сжатие в какой-то области облака, там увеличивается плотность, а температура поначалу почти не меняется. Такое изотермическое сжатие приводит к уменьшению критерия устойчивости Lj , а это, значит, что неустойчивость возникнет уже в более мелких масштабах. Внутри сжимающегося облака образуются новые центры сжатия – явление каскадной фрагментации облака.


Пока облако достаточно разрежено оно легко пропускает через себя гравитационную энергию, высвобождающуюся при сжатии, в виде инфракрасных квантов, испускаемых атомами. Гравитационное сжатие прекращается тогда, когда плотность облака возрастает настолько, что вещество становится непрозрачным к собственному излучению, которое начинает накапливаться в облаке и нагревать газ. Так в глубинах сжимающегося облака возникает устойчивое дозвездное тело – протозвезда.

Протозвезда. Рассмотрев в общих чертах начало процесса формирования протозвезд, мы имеем два важных результата, доступных проверке наблюдениями. Во-первых, становится ясно, почему звезды преимущественно возникают группами, в виде звездных скоплений. Число звезд в скоплениях, так же в согласии с наблюдениями должно быть порядка 1000 штук, если считать что в среднем звезды образуются с массами, близкими к солнечной. Во-вторых, можно понять, почему массы звезд заключены в сравнительно узких пределах, связанных с критерием Джинса.

Когда разогрев центрального сгущения окажется достаточным, чтобы возникшее газовое давление противостояло гравитации, сжатие этого сгущения прекращается, и основным процессом становится аккреция, т. е. падение вещества из облака на сформировавшееся ядро. Именно этот процесс максимально влияет на разброс масс звезд. В результате аккреции масса звезды постепенно увеличивается, а значит, растет температура и светимость звезды. На этом этапе протозвезда оказывается изолированной от внешней среды плотной и непрозрачной для видимого излучения оболочной. Такие объекты получили названия «звезд-коконов». Они перерабатывают горячее излучение протозвезды в мощное инфракрасное излучение. При дальнейшем росте массы растет и давление излучения протозвезды, которое рано или поздно остановит аккрецию вещества, а затем и начнет отталкивать остатки облака, не дав возможности им упасть на ядро. Из равенства силы гравитации силе светового давления Fизл=Fграв можно определить максимально возможную светимость L, которая для звезды с массой 100М8 равна 3–106L8, что соответствует наблюдаемым максимальным светимостям стационарных звезд главной последовательности на диаграмме Герцшпрунга-Рессела.

Очищенная от остатков оболочки звезда в это время переходит в гидростатическое равновесие за счет того, что при достаточно большой массе в ее недрах включается новый собственный источник энергии – термоядерные реакции. В это время звезда окончательно переходит на главную последовательность, на которой и остается большую часть своей жизни.

Области звездообразования. Гигантские молекулярные облака с массами, большими 105 массы Солнца (их известно более 6 000 в Галактике), содержат 90 % всего молекулярного газа Галактики. Именно с ними связаны области звездообразования. Рассмотрим две из них.

Туманность Орел - облако межзвездного газа, нагретого свечением нескольких горячих звезд типа O или B, в котором мы вживую можем наблюдать процессы рождения звезд. Расположена она в 6000 световых лет от нас в созвездии Змеи. Скопление звезд на фоне Орла сформировалось в этой газовой туманности, оно и является причиной, вызывающей ее свечение. В наше время образование звезд продолжается вблизи "туловища слона". Маленькие, темные области, возможно, являются протозвездами. Их еще называют звездными яйцами. Звезды внутри туманности имеют возраст лишь около 5,5 миллионов лет. В центре туманности выделяются так называемые газовые Столбы. Это области звездообразования, состоящие почти из одного молекулярного водорода . Выделяющиеся оконечности столбов (слоновьи хоботы) несколько больше нашей Солнечной Системы. Часто в вершинах этих конусов располагаются глобулы – небольшие плотные темные газопылевые туманности, в которых уже начался процесс гравитационного сжатия. В некоторых глобулах наблюдаются объекты Хербига-Аро звездообразные сгущения обнаруженные в 1954 году, хотя на фотографиях за несколько лет до этого они отсутствовали. Это – первое, из непосредственно наблюдавшихся на наших глазах, следствие процесса звездообразования.


Туманность Ориона находится в центре "меча" в созвездии Ориона. Она может наблюдаться без всяких оптических инструментов, но при помощи хорошего телескопа вид ее впечатляет гораздо больше. М42 - ярчайшая из видимых с Земли туманностей. Расстояние до нее световых лет - приблизительное. Внутри Туманности Ориона рождается много новых звезд, кроме того, с помощью инфракрасных фотографий были открыты несколько протопланетных облаков - образующихся планетных систем. Уже 15-сантиметровые телескопы позволяют увидеть в сердце туманности - так называемую Трапецию - четыре звезды, расположенных в углах воображаемой равнобокой трапеции. Эти звезды - одни из самых молодых, среди нам известных. Их возраст около лет. Туманность в Орионе содержит кроме обычных для туманностей газов (водорода и гелия), кислород и даже некоторые молекулярные соединения, в том числе и органические. Этот грандиозный газопылевой комплекс является крупнейшим в Галактике.

Теплоэнергетика" href="/text/category/teployenergetika/" rel="bookmark">тепловой энергии , и температура растет. Для обычных тел, не имеющих собственных источников энергии, потери на излучение сопровождаются охлаждением, и их теплоемкость положительна. Отрицательная теплоемкость звезды вместе с сильной зависимостью энерговыделения от температуры приводит к тому, что звезды главной последовательности оказываются саморегулирующимися системами. Действительно, случайное понижение температуры приводит не только к замедлению термоядерной реакции, но и к уменьшению внутреннего давления, и гравитационные силы начинают сжимать звезду. Как было сказано выше половина выделяющейся при сжатии энергии идет на увеличение температуры, что сразу восстанавливает уровень замедлившейся ядерной реакции, а с ним и давления. Аналогичная компенсация возникает и при случайном перегреве звезды. Благодаря саморегулируемости на стадии главной последовательности звезды находятся в тепловом равновесии, при котором ядерной энергии выделяется ровно столько, сколько необходимо, чтобы компенсировать потери на излучение. И так, мы имеем саморегулирующийся термоядерный реактор, который, к сожалению, не можем пока повторить на Земле.

Модели звезд различных классов. В начале стадии главной последовательности звезда однородна по химсоставу – это неизбежное следствие сильного перемешивания на стадии протозвезды. В дальнейшем на протяжении всей стадии главной последовательности в результате выгорания водорода в центральных областях растет содержание гелия. Когда водород там полностью выгорает, звезда уходит с главной последовательности в область гигантов или при больших массах - сверхгигантов.

По мере продвижения вверх по главной последовательности радиусы и массы звезд увеличиваются, температура в их недрах также постепенно возрастает. От значения температуры сильно зависит характер ядерных реакций в недрах звезды, а также темп энерговыделения. У звезд поздних спектральных классов G, K, M, как и в Солнце, выделение ядерной энергии в основном происходит в результате протон-протонного цикла. У горячих звезд ранних спектральных классов, в недрах которых температура выше, идут реакции углеродного цикла, при которых светимость значительно больше, что приводит значительно более быстрой эволюции. Отсюда следует, что горячие звезды, наблюдаемые в стадии главной последовательности, имеют сравнительно небольшой возраст.

Поскольку выделение энергии при углеродном цикле пропорционально аж 20 степени температуры, то вблизи центра при таком огромном энерговыделении лучистый перенос не справляется с задачей отвода энергии, поэтому в переносе энергии участвует само вещество, активно перемешиваясь, и в недрах массивных звезд возникают конвективные зоны. Слои звезды, окружающие конвективное ядро, находятся в лучистом равновесии, подобно тому, как это имеет место на Солнце.

Звезды нижней части ГП по своему строению подобны Солнцу. При протон-протонной реакции мощность энерговыделения зависит от температуры слабее, чем при углеродной цикле (примерно как Т4). В центре звезды конвекция не возникает, и энергия переносится излучением. Зато из-за сильной непрозрачности более холодных наружных слоев у звезд этой части ГП образуются протяженные наружные конвективные зоны. Чем холоднее звезда, тем на большую глубину происходит перемешивание. Если у Солнца только 2% массы приходится на слои, охваченные конвекцией, то карлик спектрального класса М практически весь конвективен.

Как видно из последних двух столбцов таблицы, время жизни звезд на ГП примерно на два порядка больше продолжительности стадии гравитационного сжатия. Это объясняет, почему на ГП располагается большинство наблюдаемых звезд. Согласно этой же таблице, эволюция массивных звезд происходит на четыре порядка быстрее, чем звезд с наименьшими массами. Поэтому более массивные звезды быстрее переходят в область гигантов и сверхгигантов, чем звезды поздних спектральных



классов. Надо сказать, что звезды с массами меньше солнечной за все время существования нашей Галактики еще не закончили стадию ГП, а объекты наименьших возможных звездных масс, даже не достигли еще ГП.

3. Уход с главной последовательности

Красные гиганты и белые карлики. Как видно из рисунка, после ухода с ГП эволюция звезд имеет весьма сложный характер, сильно зависящий от исходного значения массы. Эволюционные треки звезд средних масс сходны между собой и на них выделяются следующие этапы:

1. Уход с ГП. Образования гелиевого ядра при выгорании водорода приводит к увеличению молярной массы. В результате падает давление, начинается сжатие звезды, рост температуры, а, следовательно, и светимости, но эффективная температура падает, и звезда уходит вправо и вверх с ГП.

2. Общее сжатие. Когда доля массы водорода в ядре уменьшается до 1%, источником энергии снова на короткое время становится гравитационное сжатие, температура в недрах и светимость растут, трек круто идет резко влево и вверх.

3.Образование слоевого источника энергии. В результате разогрева от сжатия загораются остатки водорода вокруг гелиевого ядра. Возникает новая структура звезды, в которой энерговыделение происходит не в ядре, а в тонком слое вокруг него.

4. Фаза красного гиганта. Выделение энергии в тонком слое приводит к снижению эффективной температуры. Звезда сильно «разбухает» и уходит в область красных гигантов. Масса ядра растет, но гелий еще не «горит».

5. Горение гелия. Гелиевое ядро продолжает расти и разогреваться. Начинается реакция горения гелия. Звезда перемещается в сторону ГП до тех пор пока не истощатся запасы гелия, после чего вокруг образовавшегося углеродного ядра возникает слоевой гелиевый источник, опять разбухает оболочка и звезда возвращается в область гигантов. Далее для тяжелых звезд с массой > 10 М8 возможно образование нескольких слоевых источников с постепенным образованием элементов вплоть до железного пика. Их судьбу рассмотрим позже. Важной особенностью эволюционных путей является то обстоятельство, что они хотя бы однажды, а некоторые и неоднократно, пересекают зону нестабильности. Звезды на это время становятся физическими переменными с периодическим изменением радиуса.

Бесславный конец. Вернемся к жизни рядовой звезды. Чем массивнее была звезда, тем большее гелиевое ядро в ней образуется. Тем больше силы, стремящиеся его сжать. Тем больше давление в ядре и его температура. Если эта температура достаточно высока, то начинаются ядерные реакции синтеза углерода из гелия, правда, это не характерно для рядовых звезд с массой, не превосходящей 10 масс Солнца. Когда условия в ядре звезды становятся непригодными для продолжения реакций синтеза, ядро не в силах больше сдерживать гравитационные силы и резко сжимается до размеров Земли. Оболочка звезды (верхние ее слои) отрываются от ядра и уносятся в пространство. Она ярко светится под действием мощного излучения звезды. Когда такие светящиеся газовые пузыри были впервые обнаружены, они были названы планетарными туманностями , поскольку они часто выглядят как планетные диски. За сотни тысяч лет такие туманности полностью рассеиваются.

Ядро, достигнув, весьма типичных для умирающих звезд, размеров Земли, больше не может сжиматься, в так как нем произошла структурная перестройка. Электроны, ранее принадлежавшие отдельным атомам, в такой плотной "упаковке" уже нельзя отнести к тому или иному конкретному ядру атома, они как бы становятся общими, свободно перемещаясь, как в металле. Говорят, что вещество в этом случае находится в состоянии нерелятивистского вырожденного электронного газа, при котором давление внутри звезды не зависит от температуры, а зависит только от плотности. Давление электронного газа способно уравновесить силы гравитационного сжатия и поэтому дальнейшее сжатие прекращается, не смотря на отсутствие термоядерной реакции в ядре. Такой объект называется белым карликом . Связь между давлением и температурой в белом карлике описывается уже не уравнением Менделеева - Клайперона, а квантово - механическим уравнением. Ядра белых карликов состоят либо из вырожденного Не, либо из вырожденных С и О, либо из вырожденных О-Ne-Mg, в зависимости от исходной массы звезды. В результате мы получили маленькую и очень горячую звезду, которая имеет огромную плотность. Стакан вещества белого карлика весит тысячи тонн. Итак, красный гигант, расширившийся настолько, что потерял свои внешние слои, превращается в белого карлика c типичной для звезд массой (до 1,4 масс Солнца) и размерами, типичными для планет. Белые карлики за миллиарды лет просто остывают, медленно отдавая тепло в пространство и постепенно превращаясь в абсолютно мертвые останки – черные карлики . Таков бесславный конец рядовой звезды.

Д. З.§ 27.

Вопросы экспресс-опроса.

1. Где в нашей галактике происходит образование звезд?

2. Что такое планетарная туманность?

3. Что является результатом эволюции звезд типа Солнца?

4. В какой объект превращается белый карлик?

5. Какие объекты являются областями звездообразования в Галактике?

6. Что такое протозвезда?

7. Какие реакции происходят в звезде на стадии главной последовательности?

8. В какой момент жизни звезда становится красным гигантом?

9. Что такое черный карлик?

10. Почему прекращается сжатие белого карлика?

1. Туманность Орел в созвездии Змеи – М16.

2. Туманность Орион – М42.

3. Планетарная туманность «Улитка» - NGC 7293.

4. Планетарная туманность «Гантели» - М27.

5. Планетарная туманность «Бабочка» - NGC 6302.

6. Планетарная туманность «Песочные часы»- MyCn18.

7. Планетарная туманность «Эскимос» - NGC 2392.

8. Планетарная туманность «Череп» - NGC 246.

Современная астрономия располагает большим количеством аргументов в пользу утверждения, что звезды образуются путем конденсации облаков газопылевой межзвездной среды. Процесс образования звезд из этой среды продолжается и в настоящее время. Выяснение этого обстоятельства является одним из крупнейших достижений современной астрономии. Еще сравнительно недавно считали, что все звезды образовались почти одновременно много миллиардов лет назад. Крушению этих метафизических представлений способствовал, прежде всего, прогресс наблюдательной астрономии и развитие теории строения и эволюции звезд .

В результате стало ясно, что многие наблюдаемые звезды являются сравнительно молодыми объектами, а некоторые из них возникли тогда, когда на Земле уже был человек.

Важным аргументом в пользу вывода о том, что звезды образуются из межзвездной газопылевой среды, служит расположение групп заведомо молодых звезд (так называемых «ассоциаций») в спиральных ветвях Галактики. Согласно радиоастрономическим наблюдениям межзвездный газ, концентрируется преимущественно в спиральных рукавах галактик. В частности, это имеет место и в нашей Галактике.

Более того, из детальных «радиоизображений» некоторых близких к нам галактик следует, что наибольшая плотность межзвездного газа наблюдается на внутренних (по отношению к центру соответствующей галактики) краях спирали, что находит естественное объяснение, на деталях которого мы здесь останавливаться не можем .

Но именно в этих частях спиралей наблюдаются методами оптической астрономии «зоны HII», т. е. облака ионизованного межзвездного газа (причиной ионизации таких облаков может быть только ультрафиолетовое излучение массивных горячих звезд - объектов заведомо молодых.

Центральным в проблеме эволюции звезд является вопрос об источниках их энергии. В самом деле, откуда, например, берется огромное количество энергии, необходимой для поддержания излучения Солнца примерно на наблюдаемом уровне в течение нескольких миллиардов лет? Ежесекундно Солнце излучает 4 * 1033 эрг, а за 3 млрд. лет оно излучило 4 * 1050 эрг. Несомненно, что возраст Солнца около 5 млрд. лет. Это следует хотя бы из современных оценок возраста Земли различными радиоактивными методами. Вряд ли Солнце «моложе» Земли .

В прошлом веке и в начале этого века предлагались различные гипотезы о природе источников энергии Солнца и звезд. Некоторые ученые, например, считали, что источником солнечной энергии является непрерывное выпадение на его поверхность метеорных тел, другие искали источник в непрерывном сжатии Солнца.

Освобождающаяся при таком процессе потенциальная энергия могла бы, при некоторых условиях, перейти в излучение. Этот источник на раннем этапе эволюции звезды может быть довольно эффективным, но он никак не может обеспечить излучение Солнца в течение требуемого времени.

Успехи ядерной физики позволили решить проблему источников звездной энергии еще в конце тридцатых годов нашего столетия. Таким источником являются термоядерные реакции синтеза, происходящие в недрах звезд при господствующей там очень высокой температуре (порядка десяти миллионов Кельвинов).

В результате этих реакций, скорость которых сильно зависит от температуры, протоны превращаются в ядра гелия, а освобождающаяся энергия медленно «просачивается» сквозь недра звезд и в конце концов, значительно трансформированная, излучается в мировое пространство. Это исключительно мощный источник.

Если предположить, что первоначально Солнце состояло только из водорода, который в результате термоядерных реакций целиком превратился в гелий, то выделившееся количество энергии составит примерно 1052 эрг. Таким образом, для поддержания излучения на наблюдаемом уровне в течение миллиардов лет достаточно, чтобы Солнце «израсходовало» не свыше 10% своего первоначального запаса водорода.

Теперь мы можем представить картину эволюции какой-нибудь звезды следующим образом. По некоторым причинам (их можно указать несколько) начало конденсироваться облако межзвездной газопылевой среды. Довольно скоро (разумеется, по астрономическим масштабам!) под влиянием сил всемирного тяготения из этого облака образуется сравнительно плотный непрозрачный газовый шар. звезда гравитационный энергия реакция

Строго говоря, этот шар еще нельзя назвать звездой, так как в его центральных областях температура недостаточна для того, чтобы начались термоядерные реакции. Давление газа внутри шара не в состоянии пока уравновесить силы притяжения отдельных его частей, поэтому он будет непрерывно сжиматься.

Обычно одновременно образуется не одна протозвезда, а более или менее многочисленная группа их. В дальнейшем эти группы становятся звездными ассоциациями и скоплениями, хорошо известными астрономам. Весьма вероятно, что на этом самом раннем этапе эволюции звезды вокруг нее образуются сгустки с меньшей массой, которые затем постепенно превращаются в планеты.

При сжатии протозвезды температура ее повышается и значительная часть освобождающейся потенциальной энергии излучается в окружающее пространство. Так как размеры сжимающегося газового шара очень велики, то излучение с единицы его поверхности будет незначительным.

Коль скоро поток излучения с единицы поверхности пропорционален четвертой степени температуры (закон Стефана - Больцмана), температура поверхностных слоев звезды сравнительно низка, между тем как ее светимость почти такая же, как у обычной звезды с той же массой.

Поэтому такие звезды попадут в область красных гигантов или красных карликов, в зависимости от значений их первоначальных масс.

В дальнейшем протозвезда продолжает сжиматься. Ее размеры становятся меньше, а поверхностная температура растет. В этот период температура звездных недр уже оказывается достаточной для того, чтобы там начались термоядерные реакции. При этом давление газа внутри будущей звезды уравновешивает притяжение и газовый шар перестает сжиматься. Протозвезда становится звездой.

Чтобы пройти эту самую раннюю стадию своей эволюции, протозвездам нужно сравнительно немного времени. Если, например, масса протозвезды больше солнечной, нужно всего лишь несколько миллионов лет, если меньше - несколько сот миллионов лет. Так как время эволюции протозвезд сравнительно невелико, эту самую раннюю фазу развития звезды обнаружить трудно. Все же звезды в такой стадии, по-видимому, наблюдаются (например, очень интересные звезды типа T Тельца, обычно погруженные в темные туманности).

Мы можем теперь представить следующую картину: из облака межзвездной среды, путем его конденсации, образуется несколько сгустков разной массы, эволюционирующих в протозвезды. Скорость эволюции различна: для более массивных сгустков она будет больше (см. табл. 1).

Поэтому раньше всего превратится в горячую звезду наиболее массивной сгусток, между тем как остальные будут более или менее долго задерживаться на стадии протозвезды.

Излучение звезды поддерживается термоядерными реакциями, идущими в центральных областях.

Если масса велика, излучение звезды имеет огромную мощность и она довольно быстро расходует запасы своего водородного «горючего».

Ниже приводится табл. 1, дающая вычисленную продолжительность гравитационного сжатия и пребывания на главной последовательности для звезд разных спектральных классов. В этой же таблице приведены значения масс, радиусов и светимостей звезд в солнечных единицах .

Таблица 1

Спектральный класс

Светимость

Время, лет

гравитационного сжатия

пребывания на главной

последовательности

Из таблицы следует, что время пребывания на главной последовательности звезд, более «поздних», чем K0, значительно больше возраста Галактики, который по существующим оценкам близок к 15 - 20 млрд. лет.

«Выгорание» водорода (т. е. превращение его в гелий при термоядерных реакциях) происходит только в центральных областях звезды. Это объясняется тем, что звездное вещество перемешивается лишь в центральных областях звезды, где идут ядерные реакции, в то время как наружные слои сохраняют относительное содержание водорода неизменным.

Так как количество водорода в центральных областях звезды ограниченно, рано или поздно (в зависимости от массы звезды) он там практически весь «выгорит». Расчеты показывают, что масса и радиус центральной ее области, в которой идут ядерные реакции, постепенно уменьшаются, при этом звезда медленно перемещается. Этот процесс происходит значительно быстрее у сравнительно массивных звезд .

Что же произойдет со звездой, когда весь (или почти весь) водород в ее ядре «выгорит»? Так как выделение энергии в центральных областях звезды прекращается, температура и давление не могут поддерживаться на уровне, необходимом для противодействия силе тяготения, сжимающей звезду. Ядро звезды начнет сжиматься, а температура его будет повышаться. Образуется очень плотная горячая область, состоящая из гелия (в который превратился водород) с небольшой примесью более тяжелых элементов. Газ в таком состоянии носит название «вырожденного».

В этой плотной горячей области ядерные реакции происходить не будут, но они будут довольно интенсивно протекать на периферии ядра, в сравнительно тонком слое. Вычисления показывают, что светимость звезды и ее размеры начнут расти. Звезда как бы «разбухает», и начнет «сходить» с главной последовательности, переходя в области красных гигантов. Далее, оказывается, что звезды-гиганты с меньшим содержанием тяжелых элементов будут иметь при одинаковых размерах более высокую светимость.

При переходе звезды в стадию красного гиганта скорость ее эволюции значительно увеличивается. Скорость эволюции звезд определяется их первоначальной массой. Так как по ряду признаков со времени образования нашей звездной системы - Галактики - прошло около 15-20 млрд. лет, то за это конечное (хотя и огромное) время весь описанный эволюционный путь прошли только те звезды, массы которых превышают некоторую величину. По-видимому, эта «критическая» масса всего лишь на 10-12% превышает массу Солнца.

С другой стороны, процесс образования звезд из межзвездной газопылевой среды происходил в нашей Галактике непрерывно. Он происходит и сейчас. Именно поэтому, мы наблюдаем горячие массивные звезды в верхней левой части главной последовательности. Но даже звезды, образовавшиеся в самом начале формирования Галактики, если масса их меньше чем 1,2 солнечной, еще не успели сойти с главной последовательности .

Заметим, кстати, что темп звездообразования в настоящее время значительно ниже, чем много миллиардов лет назад. Солнце образовалось около 5 млрд. лет назад, когда Галактика уже давно сформировалась и в основных чертах была сходна с «современной». Вот уже по крайней мере 4,5 млрд. лет оно «сидит» на главной последовательности, устойчиво излучая благодаря ядерным реакциям превращения водорода в гелий, протекающим в его центральных областях. Сколько еще времени это будет продолжаться? Расчеты показывают, что наше Солнце станет красным гигантом через 8 млрд. лет. При этом его светимость увеличится в сотни раз, а радиус - в десятки.

Эта стадия эволюции нашего светила займет несколько сот миллионов лет. Наконец, тем или иным способом разбухшее Солнце сбросит свою оболочку и превратится в белый карлик. Вообще говоря, нам, конечно, небезразлична судьба Солнца, так как с нею тесно связано развитие жизни на Земле.

Каждый из нас хотя бы раз в жизни смотрел в звездное небо. Кто-то смотрел на эту красоту, испытывая романтические чувства, другой пытался понять, откуда берется вся эта красота. Жизнь в космосе, в отличие от жизни на нашей планете, течет на другой скорости. Время в космическом пространстве живет своими категориями, расстояния и размеры во Вселенной колоссальны. Мы редко задумываемся над тем, что на наших глазах постоянно происходит эволюция галактик и звезд. Каждый объект в бескрайнем космосе является следствием определенным физических процессов. У галактик, у звезд и даже у планет имеются основные фазы развития.

Наша планета и мы все зависим от нашего светила. Как долго Солнце будет радовать нас своим теплом, вдыхая жизнь в Солнечную систему? Что ждет нас в будущем через миллионы и миллиарды лет? В связи с этим, любопытно больше узнать о том, каковы этапы эволюции астрономических объектов, откуда берутся звезды и чем оканчивается жизнь этих чудесных светил в ночном небе.

Происхождение, рождение и эволюция звезд

Эволюция звезд и планет, населяющих нашу галактику Млечный Путь и всю Вселенную, большей частью неплохо изучена. В космосе незыблемо действуют законы физики, которые помогают понять происхождение космических объектов. Опираться в данном случае принято на теорию Большого Взрыва, которая сейчас является доминирующей доктриной о процессе происхождения Вселенной. Событие, потрясшее мироздание и приведшее к формированию вселенной, по космическим меркам молниеносно. Для космоса от рождения звезды до ее гибели проходят мгновения. Огромные расстояния создают иллюзию постоянства Вселенной. Вспыхнувшая вдали звезда светит нам миллиарды лет, в то время ее уже может и не быть.

Теория эволюции галактики и звезд является развитием теории Большого Взрыва. Учение о рождении звезд и возникновении звездных систем отличается масштабами происходящего и временными рамками, которые, в отличие от Вселенной в целом, возможно наблюдать современными средствами науки.

Изучая жизненный цикл звезд можно на примере ближайшего к нам светила. Солнце – одна из сотни триллионов звезд в нашем поле зрения. К тому же расстояние от Земли до Солнца (150 млн. км) предоставляет уникальную возможность изучить объект, не покидая пределов Солнечной системы. Полученная информация позволит детально разобраться с тем, как устроены другие звезды, как быстро эти гигантские источники тепла истощаются, каковы стадии развития звезды и каким будет финал этой блистательной жизни — тихий и тусклый или сверкающий, взрывной.

После Большого взрыва мельчайшие частицы сформировали межзвездные облака, которые стали «роддомом» для триллионов звезд. Характерно, что все звезды рождались в одно и то же время в результате сжатия и расширения. Сжатие в облаках космического газа возникало под воздействием собственной гравитации и аналогичных процессов у новых звезд по соседству. Расширение возникло в результате внутреннего давления межзвездного газа и под действием магнитных полей внутри газового облака. При этом облако свободно вращалось вокруг своего центра масс.

Облака газа, образовавшиеся после взрыва, на 98% состоят из атомарного и молекулярного водорода и гелия. Только 2% в этом массиве приходится на пылевые и твердые микроскопические частицы. Ранее считалось, что в центре любой звезды лежит ядро железа, раскаленного до температуры в миллион градусов. Именно этим аспектом и объяснялась гигантская масса светила.

В противостоянии физических сил преобладали силы сжатия, так как свет, возникающий в результате выделения энергии, не проникает внутрь газового облака. Свет вместе с частью выделяемой энергии распространяется наружу, создавая внутри плотного скопления газа минусовую температуру и зону низкого давления. Находясь в таком состоянии, космический газ стремительно сжимается, влияние сил гравитационного притяжения приводит к тому, что частицы начинают формировать звездное вещество. Когда скопление газа плотное, интенсивное сжатие приводит к тому, что образуются звездное скопление. Когда размеры газового облака незначительны, сжатие приводит к образованию одиночной звезды.

Краткая характеристика происходящего заключается в том, что будущее светило проходит два этапа — быстрое и медленное сжатие до состояния протозвезды. Говоря простым и понятным языком, быстрое сжатие является падением звездного вещества к центру протозвезды. Медленное сжатие происходит уже на фоне образовавшегося центра протозвезды. В течение последующих сотен тысяч лет новое образование сокращается в размерах, а его плотность увеличивается в миллионы раз. Постепенно протозвезда становится непрозрачной из-за высокой плотности звездного вещества, а продолжающееся сжатие запускает механизм внутренних реакций. Рост внутреннего давления и температур приводит к образованию у будущей звезды собственного центра тяжести.

В таком состоянии протозвезда пребывает миллионы лет, медленно отдавая тепло и постепенно сжимаясь, уменьшаясь в размерах. В результате вырисовываются контуры новой звезды, а плотность его вещества становится сравнима с плотностью воды.

В среднем плотность нашей звезды составляет 1,4 кг/см3 — практически такая же, как плотность воды в соленом Мертвом море. В центре Солнце имеет плотность 100 кг/см3. Звездное вещество находится не в жидком состоянии, а пребывает в виде плазмы.

Под воздействием огромного давления и температуры приблизительно в 100 миллионов К начинаются термоядерные реакции водородного цикла. Сжатие прекращается, масса объекта возрастает, когда энергия гравитации переходит в термоядерное горение водорода. С этого момента новая звезда, излучая энергию, начинает терять массу.

Вышеописанный вариант образования звезды — всего лишь примитивная схема, которая описывает начальный этап эволюции и рождения звезды. Сегодня такие процессы в нашей галактике и во всей Вселенной практически незаметны ввиду интенсивного истощения звездного материала. За всю сознательную историю наблюдений за нашей Галактикой были отмечены лишь единичные появления новых звезд. В масштабах Вселенной эта цифра может быть увеличена в сотни и в тысячи раз.

Большую часть своей жизни протозвезды скрыты от человеческого глаза пылевой оболочкой. Излучение ядра можно наблюдать только в инфракрасном диапазоне, который является единственной возможностью видеть рождение звезды. К примеру, в Туманности Ориона в 1967 году ученые-астрофизики в инфракрасном диапазоне обнаружили новую звезду, температура излучения которой составляла 700 градусов Кельвина. Впоследствии выяснилось, что местом рождения протозвезд являются компактные источники, которые имеются не только в нашей галактике, но и в других отдаленных от нас уголках Вселенной. Помимо инфракрасного излучения места рождения новых звезд отмечены интенсивными радиосигналами.

Процесс изучения и схема эволюции звезд

Весь процесс познания звезд можно условно разделить на несколько этапов. В самом начале следует определить расстояние до звезды. Информация о том, как далеко от нас находится звезда, как долго идет от нее свет, дает представление о том, что происходило со светилом на протяжении всего этого времени. После того, как человек научился измерять расстояние до далеких звезд, стало ясно, что звезды – это то же самые солнца, только разных размеров и с разной судьбой. Зная расстояние до звезды, по уровню света и количеству излучаемой энергии можно проследить процесс термоядерного синтеза звезды.

Вслед за определением расстояния до звезды можно с помощью спектрального анализа рассчитать химический состав светила и узнать его структуру и возраст. Благодаря появлению спектрографа у ученых проявилась возможность изучить природу света звезд. Этим прибором можно определить и измерить газовый состав звездного вещества, которым обладает звезда на разных этапах своего существования.

Изучая спектральный анализ энергии Солнца и других звезд, ученые пришли к выводу, что эволюция звезд и планет имеет общие корни. Все космические тела имеют однотипный, сходный химический состав и произошли из одной и той же материи, возникшей в результате Большого Взрыва.

Звездное вещество состоит из тех же химических элементов (вплоть до железа), что и наша планета. Разница только в количестве тех или иных элементов и в процессах, происходящих на Солнце и внутри земной тверди. Это и отличает звезды от других объектов во Вселенной. Происхождение звезд следует также рассматривать в контексте другой физической дисциплины — квантовой механики. По этой теории, материя, которая определяет звездное вещество, состоит из постоянно делящихся атомов и элементарных частиц, создающих свой микромир. В этом свете вызывает интерес структура, состав, строение и эволюция звезд. Как выяснилось, основная масса нашей звезды и многих других звезд приходится всего на два элемента — водород и гелий. Теоретическая модель, описывающая строение звезды, позволит понять их строение и главное отличие от других космических объектов.

Главная особенность заключается в том, что многие объекты во Вселенной имеют определенный размер и форму, тогда как звезда может по мере своего развития менять размер. Горячий газ представляет собой соединение атомов, слабо связанных друг с другом. Через миллионы лет после формирования звезды начинается остывание поверхностного слоя звездного вещества. Большую часть своей энергии звезда отдает в космическое пространство, уменьшаясь или увеличиваясь в размерах. Передача тепла и энергии происходит из внутренних областей звезды к поверхности, оказывая влияние на интенсивность излучения. Другими словами, одна и та же звезда в разные периоды своего существования выглядит по-разному. Термоядерные процессы на основе реакций водородного цикла способствуют превращению легких атомов водорода в более тяжелые элементы — гелий и углерод. По мнению астрофизиков и ученых-ядерщиков, подобная термоядерная реакция является самой эффективной по количеству выделяемого тепла.

Почему же термоядерный синтез ядра не заканчивается взрывом такого реактора? Все дело в том, что силы гравитационного поля в нем могут удерживать звездное вещество в пределах стабилизированного объема. Из этого можно сделать однозначный вывод: любая звезда представляет собой массивное тело, которое сохраняет свои размеры благодаря балансу между силами гравитации и энергией термоядерных реакций. Результатом такой идеальной природной модели является источник тепла, способный работать длительное время. Предполагается, что первые формы жизни на Земле появились 3 млрд. лет назад. Солнце в те далекие времена грело нашу планету так же, как и сейчас. Следовательно, наша звезда мало чем изменилась, несмотря на то, что масштабы излучаемого тепла и солнечной энергии колоссальны — более 3-4 млн. тонн каждую секунду.

Нетрудно подсчитать, сколько за все годы своего существования наша звезда потеряла в весе. Это будет громадная цифра, однако из-за своей огромной массы и высокой плотности такие потери в масштабах Вселенной выглядят ничтожными.

Стадии эволюции звезд

Судьба светила в находится в зависимости от исходной массы звезды и ее химического состава. Пока в ядре сосредоточены основные запасы водорода, звезда пребывает в так называемой главной последовательности. Как только наметилась тенденция на увеличение размеров звезды, значит, иссяк основной источник для термоядерного синтеза. Начался длительный финальный путь трансформации небесного тела.

Образовавшиеся во Вселенной светила изначально делятся на три самых распространенных типа:

  • нормальные звезды (желтые карлики);
  • звезды-карлики;
  • звезды-гиганты.

Звезды с малой массой (карлики) медленно сжигают запасы водорода и проживают свою жизнь достаточно спокойно.

Таких звезд большинство во Вселенной и к ним относится наша звезда – желтый карлик. С наступлением старости желтый карлик становится красным гигантом или сверхгигантом.

Исходя из теории происхождения звезд, процесс формирования звезд во Вселенной не закончился. Самые яркие звезды в нашей галактике являются не только самыми крупными, в сравнении с Солнцем, но и самыми молодыми. Астрофизики и астрономы называют такие звезды голубыми сверхгигантами. В конце концов, их ожидает одна и та же участь, которую переживают триллионы других звезд. Сначала стремительное рождение, блистательная и ярая жизнь, после которой наступает период медленного затухания. Звезды такого размера, как Солнце, имеют продолжительный жизненный цикл, находясь в главной последовательности (в средней ее части).

Используя данные о массе звезды, можно предположить ее эволюционный путь развития. Наглядная иллюстрация данной теории — эволюция нашей звезды. Ничто не бывает вечным. В результате термоядерного синтеза водород превращается в гелий, следовательно, его первоначальные запасы расходуются и уменьшаются. Когда-то, очень не скоро, эти запасы закончатся. Судя по тому, что наше Солнце продолжает светить уже более 5 млрд. лет, не меняясь в своих размерах, зрелый возраст звезды еще может продлиться примерно такой же период.

Истощение запасов водорода приведет к тому, что под воздействием гравитации ядро солнца начнет стремительно сжиматься. Плотность ядра станет очень высокой, в результате чего термоядерные процессы переместятся в прилегающие к ядру слои. Подобное состояние называется коллапсом, который может быть вызван прохождением термоядерных реакций в верхних слоях звезды. В результате высокого давления запускаются термоядерные реакции с участием гелия.

Запасов водорода и гелия в этой части звезды хватит еще на миллионы лет. Еще очень нескоро истощение запасов водорода приведет к увеличению интенсивность излучения, к увеличению размеров оболочки и размеров самой звезды. Как следствие, наше Солнце станет очень большим. Если представить эту картину через десятки миллиардов лет, то вместо ослепительного яркого диска на небе будет висеть жаркий красный диск гигантских размеров. Красные гиганты — это естественная фаза эволюции звезды, ее переходное состояние в разряд переменных звезд.

В результате такой трансформации сократится расстояние от Земли до Солнца, так что Земля попадет в зону влияния солнечной короны и начнет «жариться» в ней. Температура на поверхности планеты вырастет в десятки раз, что приведет к исчезновению атмосферы и к испарению воды. В результате планета превратится в безжизненную каменистую пустыню.

Финальные стадии эволюции звезд

Достигнув фазы красного гиганта, нормальная звезда под влиянием гравитационных процессов становится белым карликом. Если масса звезды примерно равна массе нашего Солнца, все основные процессы в ней будут происходить спокойно, без импульсов и взрывных реакций. Белый карлик будет умирать долго, выгорая дотла.

В случаях, когда звезда изначально имела массу больше солнечной в 1,4 раза, белый карлик не будет финальной стадией. При большой массе внутри звезды начинаются процессы уплотнения звездного вещества на атомном, молекулярном уровне. Протоны превращаются в нейтроны, плотность звезды увеличивается, а ее размеры стремительно уменьшаются.

Известные науке нейтронные звезды имеют диаметр в 10-15 км. При таких малых размерах нейтронная звезда имеет колоссальную массу. Один кубический сантиметр звездного вещества может весить миллиарды тонн.

В том случае, если мы имели изначально дело со звездой большой массы, финальный этап эволюции принимает другие формы. Судьба массивной звезды – черная дыра — объект с неизученной природой и непредсказуемым поведением. Огромная масса звезды способствует увеличению гравитационных сил, приводящих в движение силы сжатия. Приостановить этот процесс не представляется возможным. Плотность материи растет до тех пор, пока не превращается в бесконечность, образуя сингулярное пространство (теория относительности Эйнштейна). Радиус такой звезды в конечном итоге станет равен нулю, став черной дырой в космическом пространстве. Черных дыр было бы значительно больше, если бы в космосе большую часть пространства занимали массивные и сверхмассивные звезды.

Следует отметить, что при трансформации красного гиганта в нейтронную звезду или в черную дыру, Вселенная может пережить уникальное явление — рождение нового космического объекта.

Рождение сверхновой – самая впечатляющая финальная стадия эволюции звезд. Здесь действует естественный закон природы: прекращение существование одного тела дает начало новой жизни. Период такого цикла, как рождение сверхновой, в основном касается массивных звезд. Израсходовавшиеся запасы водорода приводят к тому, что в процесс термоядерного синтеза включается гелий и углерод. В результате этой реакции давление снова растет, а в центре звезды образуется ядро железа. Под воздействием сильнейших гравитационных сил центр массы смещается в центральную часть звезды. Ядро становится настолько тяжелым, что неспособно противостоять собственной гравитации. Как следствие, начинается стремительное расширение ядра, приводящее к мгновенному взрыву. Рождение сверхновой — это взрыв, ударная волна чудовищной силы, яркая вспышка в бескрайних просторах Вселенной.

Следует отметить, что наше Солнце не является массивной звездой, поэтому подобная судьба ее не грозит, не стоит бояться такого финала и нашей планете. В большинстве случаев взрывы сверхновых происходят в далеких галактиках, с чем и связано их достаточно редкое обнаружение.

В заключение

Эволюция звезд — это процесс, который растянут по времени на десятки миллиардов лет. Наше представление о происходящих процессах — всего лишь математическая и физическая модель, теория. Земное время является лишь мгновением в огромном временном цикле, которым живет наша Вселенная. Мы можем только наблюдать то, что происходило миллиарды лет назад и предполагать, с чем могут столкнуться последующие поколения землян.

Если у вас возникли вопросы - оставляйте их в комментариях под статьей. Мы или наши посетители с радостью ответим на них

Изучение звёздной эволюции невозможно наблюдением лишь за одной звездой - многие изменения в звёздах протекают слишком медленно, чтобы быть замеченными даже по прошествии многих веков. Поэтому учёные изучают множество звёзд, каждая из которых находится на определённой стадии жизненного цикла. За последние несколько десятилетий широкое распространение в астрофизике получило моделирование структуры звёзд с использованием вычислительной техники .

Энциклопедичный YouTube

    1 / 5

    ✪ Звёзды и звёздная эволюция (рассказывает астрофизик Сергей Попов)

    ✪ Звёзды и звёздная эволюция (рассказывают Сергей Попов и Илгонис Вилкс)

    ✪ С. А. Ламзин - "Звездная эволюция"

    ✪ Эволюция звезд. Эволюция голубого гиганта за 3 минуты

    ✪ Сурдин В.Г. Звёздная эволюция Часть 1

    Субтитры

Термоядерный синтез в недрах звёзд

Молодые звёзды

Процесс формирования звёзд можно описать единым образом, но последующие стадии эволюции звезды почти полностью зависят от её массы, и лишь в самом конце эволюции звезды свою роль может сыграть её химический состав.

Молодые звёзды малой массы

Молодые звёзды малой массы (до трёх масс Солнца) [ ] , находящиеся на подходе к главной последовательности , полностью конвективны, - процесс конвекции охватывает все тело звезды. Это ещё по сути протозвёзды, в центрах которых только-только начинаются ядерные реакции, и всё излучение происходит, в основном, из-за гравитационного сжатия. До тех пор пока гидростатическое равновесие не установится, светимость звезды убывает при неизменной эффективной температуре. На диаграмме Герцшпрунга-Рассела такие звёзды формируют почти вертикальный трек, называемый треком Хаяши . По мере замедления сжатия молодая звезда приближается к главной последовательности. Объекты такого типа ассоциируются со звёздами типа T Тельца .

В это время у звёзд массой больше 0,8 масс Солнца ядро становится прозрачным для излучения, и лучистый перенос энергии в ядре становится преобладающим, поскольку конвекция все больше затрудняется всё большим уплотнением звездного вещества. Во внешних же слоях тела звезды превалирует конвективный перенос энергии.

О том, какими характеристиками в момент попадания на главную последовательность обладают звёзды меньшей массы, достоверно неизвестно, так как время нахождения этих звёзд в разряде молодых превышает возраст Вселенной [ ] . Все представления об эволюции этих звёзд базируются только на численных расчётах и математическом моделировании.

По мере сжатия звезды начинает расти давление вырожденного электронного газа и при достижении определённого радиуса звезды сжатие останавливается, что приводит к остановке дальнейшего роста температуры в ядре звезды, вызываемого сжатием, а затем и к её снижению. Для звёзд меньше 0,0767 масс Солнца это не происходит: выделяющейся в ходе ядерных реакций энергии никогда не хватит, чтобы уравновесить внутреннее давление и гравитационное сжатие. Такие «недозвёзды» излучают энергии больше, чем образуется в процессе термоядерных реакций, и относятся к так называемым коричневым карликам . Их судьба - постоянное сжатие, пока давление вырожденного газа не остановит его, и, затем, постепенное остывание с прекращением всех начавшихся термоядерных реакций.

Молодые звёзды промежуточной массы

Молодые звёзды промежуточной массы (от 2 до 8 масс Солнца) [ ] качественно эволюционируют точно так же, как и их меньшие сестры и братья, за тем исключением, что в них нет конвективных зон вплоть до главной последовательности.

Объекты этого типа ассоциируются с т. н. звёздами Ae\Be Хербига неправильными переменными спектрального класса B-F0. У них также наблюдаются диски и биполярные джеты. Скорость истечения вещества с поверхности, светимость и эффективная температура существенно выше, чем для T Тельца , поэтому они эффективно нагревают и рассеивают остатки протозвёздного облака.

Молодые звёзды с массой больше 8 солнечных масс

Звезды с такими массами уже обладают характеристиками нормальных звезд, поскольку прошли все промежуточные стадии и смогли достичь такой скорости ядерных реакций, которая компенсировала потери энергии на излучение, пока накапливалась масса для достижения гидростатического равновесия ядра. У этих звёзд истечение массы и светимость настолько велики, что не просто останавливают гравитационный коллапс ещё не ставших частью звезды внешних областей молекулярного облака, но, наоборот, разгоняют их прочь. Таким образом, масса образовавшейся звезды заметно меньше массы протозвёздного облака. Скорее всего, этим и объясняется отсутствие в нашей галактике звёзд с массой больше, чем около 300 масс Солнца.

Середина жизненного цикла звезды

Среди звёзд встречается широкое многообразие цветов и размеров. По спектральному классу они варьируются от горячих голубых до холодных красных, по массе - от 0,0767 до около 300 Солнечных масс по последним оценкам. Светимость и цвет звезды зависят от температуры её поверхности, которая, в свою очередь, определяется её массой. Все новые звёзды «занимают своё место» на главной последовательности согласно своему химическому составу и массе. Речь, естественно, идёт не о физическом перемещении звезды - только о её положении на указанной диаграмме, зависящем от параметров звезды. Фактически, перемещение звезды по диаграмме отвечает лишь изменению параметров звезды.

Возобновившееся на новом уровне термоядерное «горение» вещества становится причиной чудовищного расширения звезды. Звезда «распухает», становясь очень «рыхлой», и её размер увеличивается приблизительно в 100 раз. Так звезда становится красным гигантом , а фаза горения гелия продолжается около нескольких миллионов лет. Практически все красные гиганты являются переменными звёздами .

Финальные стадии звёздной эволюции

Старые звёзды с малой массой

В настоящее время достоверно неизвестно, что происходит с лёгкими звёздами после истощения запаса водорода в их недрах. Поскольку возраст Вселенной составляет 13,7 миллиардов лет, что недостаточно для истощения запаса водородного топлива в таких звёздах, современные теории основываются на компьютерном моделировании процессов, происходящих в таких звёздах.

Некоторые звёзды могут синтезировать гелий лишь в некоторых активных зонах, что вызывает их нестабильность и сильные звёздные ветры . В этом случае образования планетарной туманности не происходит, и звезда лишь испаряется, становясь даже меньше, чем коричневый карлик [ ] .

Звезда с массой менее 0,5 солнечной не в состоянии преобразовывать гелий даже после того, как в её ядре прекратятся реакции с участием водорода, - масса такой звезды слишком мала для того, чтобы обеспечить новую фазу гравитационного сжатия до степени, достаточной для «поджига» гелия. К таким звёздам относятся красные карлики , такие как Проксима Центавра , срок пребывания которых на главной последовательности составляет от десятков миллиардов до десятков триллионов лет . После прекращения в их ядрах термоядерных реакций, они, постепенно остывая, будут продолжать слабо излучать в инфракрасном и микроволновом диапазонах электромагнитного спектра .

Звёзды среднего размера

При достижении звездой средней величины (от 0,4 до 3,4 солнечных масс) [ ] фазы красного гиганта в её ядре заканчивается водород, и начинаются реакции синтеза углерода из гелия . Этот процесс идет при более высоких температурах и поэтому поток энергии от ядра увеличивается и, как следствие, внешние слои звезды начинают расширяться. Начавшийся синтез углерода знаменует новую стадию в жизни звезды и продолжается некоторое время. Для звезды, по размеру близкой к Солнцу, этот процесс может занять около миллиарда лет.

Изменения в величине излучаемой энергии заставляют звезду пройти через периоды нестабильности, включающие в себя изменения размера, температуры поверхности и выпуск энергии. Выпуск энергии смещается в сторону низкочастотного излучения. Все это сопровождается нарастающей потерей массы вследствие сильных звёздных ветров и интенсивных пульсаций. Звёзды, находящиеся в этой фазе, получили название «звёзд позднего типа» (также «звезды-пенсионеры»), OH -IR звёзд или Мира-подобных звёзд, в зависимости от их точных характеристик. Выбрасываемый газ относительно богат производимыми в недрах звезды тяжёлыми элементами, такими как кислород и углерод . Газ образует расширяющуюся оболочку и охлаждается по мере удаления от звезды, делая возможным образование частиц пыли и молекул. При сильном инфракрасном излучении звезды-источника в таких оболочках формируются идеальные условия для активации космических мазеров .

Реакции термоядерного сжигания гелия очень чувствительны к температуре. Иногда это приводит к большой нестабильности. Возникают сильнейшие пульсации, которые в результате сообщают внешним слоям достаточное ускорение, чтобы быть сброшенными и превратиться в планетарную туманность . В центре такой туманности остаётся оголенное ядро звезды, в котором прекращаются термоядерные реакции, и оно, остывая, превращается в гелиевый белый карлик , как правило, имеющий массу до 0,5-0,6 Солнечных масс и диаметр порядка диаметра Земли .

Подавляющее большинство звёзд, и Солнце в том числе, завершают свою эволюцию, сжимаясь до тех пор, пока давление вырожденных электронов не уравновесит гравитацию . В этом состоянии, когда размер звезды уменьшается в сотню раз, а плотность становится в миллион раз выше плотности воды , звезду называют белым карликом . Она лишена источников энергии и, постепенно остывая, становится невидимым черным карликом .

У звёзд более массивных, чем Солнце , давление вырожденных электронов не может остановить дальнейшее сжатие ядра, и электроны начинают «вдавливаться» в атомные ядра , что превращает протоны в нейтроны , между которыми не существуют силы электростатического отталкивания. Такая нейтронизация вещества приводит к тому, что размер звезды, которая теперь, фактически, представляет собой одно огромное атомное ядро, измеряется несколькими километрами, а плотность в 100 млн раз превышает плотность воды. Такой объект называют нейтронной звездой ; его равновесие поддерживается давлением вырожденного нейтронного вещества.

Сверхмассивные звёзды

После того, как звезда с массой большей, чем пять Солнечных масс, входит в стадию красного сверхгиганта , её ядро под действием сил гравитации начинает сжиматься. По мере сжатия растут температура и плотность, и начинается новая последовательность термоядерных реакций. В таких реакциях синтезируются все более тяжёлые элементы: гелий, углерод, кислород, кремний и железо, что временно сдерживает коллапс ядра.

В результате по мере образования всё более тяжёлых элементов Периодической системы , из кремния синтезируется железо-56. На этой стадии дальнейший экзотермический термоядерный синтез становится невозможен, поскольку ядро железа-56 обладает максимальным дефектом массы и образование более тяжёлых ядер с выделением энергии невозможно. Поэтому когда железное ядро звезды достигает определённого размера, то давление в нём уже не в состоянии противостоять весу вышележащих слоёв звезды, и происходит незамедлительный коллапс ядра с нейтронизацией его вещества.

То, что происходит далее, пока до конца не ясно, но, в любом случае, происходящие процессы в считанные секунды приводят к взрыву сверхновой звезды невероятной мощности .

Сильные струи нейтрино и вращающееся магнитное поле выталкивают большую часть накопленного звездой материала [ ] - так называемые рассадочные элементы, включая железо и более лёгкие элементы. Разлетающаяся материя бомбардируется вылетающими из звездного ядра нейтронами, захватывая их и тем самым создавая набор элементов тяжелее железа, включая радиоактивные, вплоть до урана (а возможно, даже до калифорния). Таким образом, взрывы сверхновых объясняют наличие в межзвёздном веществе элементов тяжелее железа, но это не есть единственно возможный способ их образования, что, к примеру, демонстрируют технециевые звёзды .

Взрывная волна и струи нейтрино уносят вещество прочь от умирающей звезды [ ] в межзвёздное пространство. В последующем, остывая и перемещаясь по космосу, этот материал сверхновой может столкнуться с другим космическим «утилем» и, возможно, участвовать в образовании новых звёзд, планет или спутников.

Процессы, протекающие при образовании сверхновой, до сих пор изучаются, и пока в этом вопросе нет ясности. Также под вопросом остаётся момент, что же на самом деле остаётся от изначальной звезды. Тем не менее, рассматриваются два варианта: нейтронные звезды и чёрные дыры.

Нейтронные звёзды

Известно, что в некоторых сверхновых сильная гравитация в недрах сверхгиганта заставляет электроны поглотиться атомным ядром , где они, сливаясь с протонами , образуют нейтроны . Этот процесс называется нейтронизацией . Электромагнитные силы, разделяющие близлежащие ядра, исчезают. Ядро звезды теперь представляет собой плотный шар из атомных ядер и отдельных нейтронов.

Такие звёзды, известные, как нейтронные звёзды, чрезвычайно малы - не более размера крупного города, и имеют невообразимо высокую плотность. Период их обращения становится чрезвычайно мал по мере уменьшения размера звезды (благодаря сохранению момента импульса). Некоторые нейтронные звёзды совершают 600 оборотов в секунду. У некоторых из них угол между вектором излучения и осью вращения может быть таким, что Земля попадает в конус, образуемый этим излучением; в этом случае можно зафиксировать импульс излучения, повторяющийся через промежутки времени, равные периоду обращения звезды. Такие нейтронные звёзды получили название «пульсары », и стали первыми открытыми нейтронными звёздами.

Чёрные дыры

Далеко не все звезды, пройдя фазу взрыва сверхновой, становятся нейтронными звёздами. Если звезда обладает достаточно большой массой, то коллапс такой звезды продолжится, и сами нейтроны начнут обрушиваться внутрь, пока её радиус не станет меньше радиуса Шварцшильда . После этого звезда становится чёрной дырой.

Существование чёрных дыр было предсказано общей теорией относительности . Согласно этой теории,

 


Читайте:



Умножение на однозначное число столбиком

Умножение на однозначное число столбиком

Чтобы пользоваться предварительным просмотром презентаций создайте себе аккаунт (учетную запись) Google и войдите в него:...

Методическая разработка семинара для педагогов дополнительного образования на тему «Создание развивающей образовательной среды для обучающихся на занятиях

Методическая разработка семинара для педагогов дополнительного образования на тему «Создание развивающей образовательной среды для обучающихся на занятиях

Районный семинар«Разработка программы дополнительного образования детей»Программа – нормативный официальный документ, фиксирующий процесс...

Ноев ковчег. Ковчег спасения. Значение «ноев ковчег Что означает фразеологизм ноев ковчег

Ноев ковчег. Ковчег спасения. Значение «ноев ковчег Что означает фразеологизм ноев ковчег

Но́ев ковче́г — 1) по библейскому сказанию: судно, в котором праведный человек Ной во время всемирного потопа взял парами людей и животных, семена...

Презентация по физике на тему "звуковые волны"

Презентация по физике на тему

ученицы 9 класса МКОУ "Бабежская СОШ" Ступникова Ксения, Герасимова Яна, руководитель: Тетенькина Екатерина ВладимировнаДанная презентация...

feed-image RSS