Главная - Пелевин Виктор
Азотный цикл в аквариуме. Значение нитрифицирующие бактерии в современном толковом словаре, бсэ Так называемый замкнутый круг
22 апреля 2016

По типу питания все известные живые организмы делятся на два больших вида: гетеро- и автотрофы. Отличительной особенностью последних является их способность к самостоятельному построению новых элементов из углекислоты и других неорганических веществ.

Источники энергии, поддерживающие их жизнедеятельность, обусловливают их деление на фотоафтотрофы (источник - свет) и хемоавтотрофы (источник - минеральные вещества). А в зависимости от названия субстрата, который окисляют хемоавтортофы, они разделяются на водородные и нитрифицирующие бактерии, а также на серо- и железобактерии.

Данная статья будет посвящена наиболее распространенной среди них группе - нитрофицирующим бактериям.

История открытия

Еще в середине 19 века немецкими учеными было доказано, что процесс нитрификации является биологическим. Опытным путем они показали, что при добавлении к канализационным водам хлороформа останавливалось окисление аммиака. Но объяснить, почему так происходит, они не смогли.

Это удалось сделать несколькими годами позже русскому ученому Виноградскому. Он выделил две группы бактерий, которые поэтапно брали участие в процессе нитрификации. Так, одна группа обеспечивала окисление аммония до кислоты азотистой, а уже вторая группа бактерий отвечала за ее превращение в азотную. Все задействованные в этом процессе нитрифицирующие бактерии являются грамотрицательными.

Особенности процесса окисления

Процесс образования нитритов путем окисления аммония имеет несколько этапов, в ходе которых образуются азотсодержащие соединения с различной степенью окисленности группы NH.

Первым продуктом окисления аммония является гидроксиламин. Вероятней всего, он образуется из-за включения молекулярного кислорода в группу NH 4 , хотя окончательно этот процесс не доказан и остается дискутабельным.

Далее гидроксиламин превращается в нитрит. Предположительно, процесс осуществляется через образование NOH (гипонитрита) с выделением закиси азота. В этом случае ученые считают продукцию закиси азота всего лишь побочным продуктом синтеза, из-за восстановления нитрита.

Кроме продукции химических элементов, в ходе денитрофикации выделяется большое количество энергии. Подобно происходящему у гетеротрофных аэробных организмов, в данном случае синтез молекул АТФ связан с окислительно-восстановительными процессами, в результате которых на кислород передаются электроны.

При окислении нитрита большую роль играет процесс обратного транспорта электронов. Включение его электронов в цепь происходит непосредственно в цитохромах (С-типа и/или А-типа), а для этого требуется достаточно большие затраты энергии. Как результат, хемоавтотрофные нитрифицирующие бактерии полностью обеспечены нужным запасом энергии, которая используется для процессов построения и усвоения углекислоты.

Виды нитрифицирующих бактерий

В первой фазе нитрификации берут участие четыре рода нитробактерий:

  • нитросомонас;
  • нитроцистис;
  • нитросолюбус;
  • нитрососпира.

Кстати, на предложенном изображении вы можете видеть нитрифицирующие бактерии (фото под микроскопом).

Экспериментальным путем среди них достаточно сложно, а зачастую и вовсе невозможно выделить одну из культур, поэтому их рассмотрение преимущественно комплексное. Все из перечисленных микроорганизмов имеют размер до 2-2,5 мкм и преимущественно овальную или округлую форму (за исключением нитроспиры, которые имеют вид палочки). Они способны к бинарному делению и направленному движению за счет жгутиков.

Во второй фазе нитрификации принимают участие:

  • род нитробактер;
  • род нитроспина;
  • нитрококус.

Наиболее изучен штамм бактерий рода нитрбактер, имеющий название в честь своего первооткрывателя Виноградского. Эти бактерии нитрифицирующие имеют грушевидную форму клеток, размножаются почкованием, с образованием подвижной (за счет жгутика) дочерней клетки.

Строение бактерий

Исследованные нитрифицируюшие бактерии имеют схожее клеточное строение с другими грамотрицательными микроорганизмами. Некоторые из них имеют достаточно развитую систему внутренних мембран, образующих стопку в центре клетки, тогда как у других они располагаются больше по периферии или образуют структуру в виде чаши, состоящую из нескольких листков. По всей видимости, именно с этими образованиями связаны ферменты, которые участвуют в процессе окисления нитрификаторами специфических субстратов.

Тип питания нитрифицирующих бактерий

Нитробактерии относятся к облигатным автотрофам, поскольку не способны использовать экзогенные органические вещества. Однако экспериментальным путем все же показана способность некоторых штаммов нитрифицирующих бактерий использовать некоторые органические соединения.

Было выявлено, что субстрат, содержащий дрожжевые автолизаты, серин и глутамат в низких концентрациях, стимулирующим образом воздействовал на рост нитробактерий. Это происходит как при наличии нитрита, так и при его отсутствии в питательной среде, хотя процесс протекает гораздо медленнее. И наоборот, при наличии нитрита процесс окисления ацетата подавляется, но значительно увеличивается включение его углерода в белок, различные аминокислоты и другие клеточные компоненты.

В результате множественных экспериментов были получены данные о том, что бактерии нитрифицирующие все же могут переключаться на гетеротрофное питание, но насколько продуктивно и как долго они могут существовать в таких условиях, еще предстоит выяснить. Пока данные достаточно противоречивы, чтобы делать окончательные умозаключения по этому поводу.

Среда обитания и значение нитрифицирующих бактерий

Нитрифицирующие бактерии относятся к хемоавтотрофам и имеют широкое распространение в природе. Они встречаются повсеместно: в почве, различных субстратах, а также водоемах. Процесс их жизнедеятельности вносит большой вклад в общий круговорот азота в природе и в действительности может достигать огромных масштабов.

Например, такой микроорганизм, как нитроцистис океанус, выделенный из Атлантического океана, относится к облигатным галофилам. Он может существовать только в морской воде или субстратах, содержащих ее. Для таких микроорганизмов важна не только среда обитания, но и такие константы, как рН и температура.

Все известные нитрифицирующие бактерии относят к облигатным аэробам. Для того чтобы окислить аммоний в азотистую кислоту, а азотистую кислоту в азотную, им нужен кислород.

Условия обитания

Еще одним важным моментом, который выявили ученые, стало то, что место, где живут нитрифицирующие бактерии, не должно содержать органических веществ. Была выдвинута теория, что эти микроорганизмы в принципе не могут использовать органические соединения из вне. Их даже назвали облигатными автотрофами.

В последующем неоднократно было доказано пагубное влияние глюкозы, мочевины, пептона, глицерина и другой органики на бактерии нитрифицирующие, но эксперименты не останавливаются.

Значение нитрифицирующих бактерий для почвы

До недавнего времени считалось, что нитрификаторы благоприятно влияют на почву, увеличивая ее плодородность путем расщепления аммония до нитратов. Последние не только хорошо абсорбируются растениями, но и сами по себе повышают растворимость некоторых минеральных веществ.

Однако, в последние годы научные взгляды претерпевают изменения. Выявлено отрицательное действие описываемых микроорганизмов на плодородность почвы. Бактерии нитрифицирующие, образуя нитраты, подкисляют среду, что не всегда является положительным моментом, а также в большей степени провоцируют насыщение почвой ионов аммония, чем нитратов. Более того, нитраты имеют способность восстанавливаться до N 2 (в процессе денитрифакации), что в свою очередь ведет к обеднению почвы азотом.

В чем опасность нитрифицирующих бактерий?

Некоторые штаммы нитробактерий в присутствии органического субстрата могут окислять аммоний, образовывая гидроксиламин, а в последующем нитриты и нитраты. Также в результате таких реакций могут возникать гидроксамовые кислоты. Более того, ряд бактерий осуществляет процесс нитрификации различных соединений, в состав которых входит азот (оксимы, амины, амиды, гидроксаматы и другие нитросоединения).

Масштабы гетеротрофной нитрификации при определенных условиях могут быть не только огромными, но и весьма пагубными. Опасность заключается в том, что в ходе таких превращений происходит образование токсических веществ, мутагенов и канцерогенов. Поэтому ученые пристально работают над изучением данной темы.

Биологический фильтр, который всегда под рукой

Нитрифицирующие бактерии - это не абстрактное понятие, а весьма распространенная форма жизни. Более того, они часто используются человеком.

Например, в состав биологических фильтров для аквариумов входят именно эти бактерии. Данный вид очистки менее затратный и не такой трудоемкий, как механическая очистка, но в тоже время требует соблюдения определенных условий, чтобы обеспечить рост и жизнедеятельность нитрифицирующим бактериям.

Наиболее благоприятным микроклиматом для них является температура окружающей среды (в данном случае воды) порядка 25-26 градусов Цельсия, постоянный приток кислорода и наличие водных растений.

Нитрифицирующие бактерии в сельском хозяйстве

Для того чтобы повысить урожайность, аграрии используют различные удобрения, содержащие нитрифицирующие бактерии.

Питание почвы в таком случае обеспечивается нитробактериями и азотобактериями. Эти бактерии извлекают из почвы и воды необходимые вещества, которые в процессе окисления образуют достаточно большое количество энергии. Это так называемый процесс хемосинтеза, когда полученная энергия идет на образование сложных молекул органического происхождения из углекислого газа и воды.

Для этих микроорганизмов не обязательно поступление питательных веществ с окружающей их среды - они могут продуцировать их самостоятельно. Так, если зеленым растениями, которые также являются автотрофами, необходим солнечный свет, то для нитрифицирующих бактерий он не обязателен.

Самоочистка почвы

Почва - это идеальный субстрат для роста и размножения не только растений, но и множества живых организмов. Поэтому крайне важно ее нормальное состояние и сбалансированный состав.

Следует помнить, что биологическую очистку почвы обеспечивают в том числе и нитрифицирующие бактерии. Они, находясь в почве, водоемах или перегное, превращают аммиак, который выделяют другие микроорганизмы и отходные органические материалы, в нитраты (если быть более точными, то в соли азотной кислоты). Весь процесс состоит из двух этапов:

  1. Окисление аммиака до нитрита.
  2. Окисление нитрита до нитрата.

При этом каждый этап обеспечивается отдельными видами микроорганизмов.

Так называемый замкнутый круг

Кругооборот энергии и поддержание жизни на Земле возможно благодаря соблюдению определенных закономерностей существования всего живого. На первый взгляд трудно понять, о чем идет речь, но на самом деле все достаточно просто.

Давайте представим следующую картинку из школьного учебника:

  1. Неорганические вещества перерабатываются микроорганизмами и тем самым создают благоприятные условия в почве для роста и питания растений.
  2. Они, в свою очередь, являются незаменимым источником энергии для большинства травоядных животных.
  3. Следующей цепочкой этого жизненного звена являются хищники, энергией для которых являются, соответственно, их травоядные собратья.
  4. Люди, как известно, относятся к высшим хищникам, а это значит, что мы можем получать энергию как от растительного мира, так и от животного.
  5. А уже наши собственные остатки жизнедеятельности, а также тех самых растений и животных, служат питательным субстратом для микроорганизмов.

Таким образом, получается замкнутый круг, непрерывно функционирующий и обеспечивающий жизнь всего живого на Земле. Зная эти принципы, не сложно представить, насколько многогранна и на самом деле безгранична сила природы и всего живого.

Заключение

В данной статье мы попытались дать ответ на вопрос, что такое нитрифицирующие бактерии в биологии. Как видите, несмотря на неопровержимые доказательства жизнедеятельности, функционирования и влияния этих микроорганизмов, существует еще множество спорных вопросов, требующих дальнейших экспериментальных исследований.

Нитрифицирующие бактерии относят к хемотрофам. Источником энергии для них служат различные минеральные вещества. Несмотря на свои микроскопические размеры, эти живые организмы оказывают огромное влияние на окружающий их мир.

Как известно, хемотрофы не могут усваивать органические соединения, которые находятся в субстрате (почвенном или водном). Они, наоборот, продуцируют строительный материал для создания живой и функционирующей клетки.

Живые организмы по типу питания подразделяются на автотрофы и гетеротрофы. Последние самостоятельно строят новые элементы из углекислоты и других неорганических веществ. Нитрифицирующие бактерии являются известной формой жизни, часто использующейся в быту и хозяйстве. Эти виды входят в состав очищающих устройств для аквариумов.

Нитрифицирующие бактерии используются для очистки аквариума

Основная характеристика

Источники энергии, поддерживающие условия жизни организмов, определяют их деление на фотоавтотрофы и хемоавтотрофы, которые зависят от солнечной энергии и минеральных компонентов. В зависимости от окислителя хемоавтотрофа, выделяют водородные и нитрифицирующие бактерии, серо- и железобактерии.

Предназначение и классификация

В начале XIX века ученые доказали, что нитрификация относится к биологии. Для этого к сточным водам они добавляли хлороформ.

Среди автотрофов, производящих сложную органику из простых неорганических молекул, известны организмы, применяющие энергию. Это водоросли, бактерии, вырабатывающие органические вещества из углекислого газа и воды. Присутствие автотрофов обусловлено наличием кислорода и невысокой влажностью.


Нитрифицирующие бактерии имеют большое значение в сельском хозяйстве

Организмы, принимающие энергию от окисления и восстановления (хемоавтотрофы), выявлены среди бактерий. По физиологическим, биологическим и химическим свойствам и значению эти микроскопические организмы представляют интерес для отдельных сфер сельского хозяйства.

Во время исследования завершался процесс окисления аммиака. Виноградский разделил нитрификаторы на бактерии, исполняющие первый этап этого процесса (окисление аммония до азотистой кислоты), и второй - переход этой кислоты в азотную. Грамотрицательные бактерии относятся к нитробактериям.

Представители первой фазы Nitro:

  • Somonas (Сомонас);
  • Socystis (Сосайстис);
  • Solobus (Солобус);
  • Sospira (Соспира).

Больше изучен вид Сомонас, хотя создание настоящих культур представляется сложным. Клетки овальной формы, размножаются образованием дочерних прокариотов из материнской клетки. В результате развития микроорганизмов в жидкой среде имеются подвижные формы с несколькими жгутиками и недвижимой зооглеей.

Нитрососайстис характеризуются круглой формой, размером до 2 мкм. Некоторые представители достигают 10 мкм. Передвигаются благодаря одному жгутику, образуют зооглеи и цисты. Нитросолобус равен 1−1,5*1−2,5 мкм. Клетки делятся на части, и поэтому внешняя форма неправильная.

Клетки Nitrosospira палочковидные или извивающиеся, размером 0,9−1*1,5−2,60 мкм, имеют до 5 жгутиков.


Бактерии имеют размер 0,9−1*1,5−2,60 мкм

Бактерии второй фазы Nitro:

  • Bacter (Бактер);
  • Spina (Спина);
  • Coccus (Кокус).

Пагубное влияние органических веществ на хемоавтотрофные организмы отмечено и в исследованиях ученых. Они не применяют экзогенные органические элементы и называются облигатными автотрофами. Применять отдельные соединения бактерии могут с ограниченными возможностями.

Улучшается рост Нитробактер при наличии нитрита дрожжевого автолизата, пиридоксина, глутамата и серина, если они в слабой концентрации вносятся в среду.

Основное строение нитрификаторов:

  • Сформированная система мембран в виде стопки в центре клетки, посередине.
  • Чашеподобная структура, состоящая из нескольких листиков.

Клетки Nitrobacter по виду напоминают грушу. Размножаются путем почкования. Информация о бактериях Нитроспина и Нитрококус ограничена.

По строению клеток изученные бактерии аналогичны другим грамотрицательным микроорганизмам. У некоторых есть сформированные системы внутренних мембран, создающих стопку в середине клетки (Нитрососайстис), размещаются параллельно мембране цитоплазме (Нитросомонас) или формируют чашеподобную структуру из слоев (Нитробактер Виноградский). Кислород важен для окисления аммония в азотную кислоту:


По строению клеток изученные бактерии аналогичны другим грамотрицательным микроорганизмам

Нитробактер и Нитросомонас воссоздают нитриты с аммонием. Наряду с нитрифицирующими хемотрофами существуют гетеротрофы, имеющие похожие процессы. К ним относятся грибы из рода Фусамм и бактерии Алкалигенес, Соринебактериум, Ахромоба-ктер, Псеудомонас, Арфробактер. Нокардиа окисляет аммоний с созданием гидроксиламина, нитритов и нитратов. В итоге образуется гидроксамовая кислота.

Азот является важным элементом, входящим в состав нуклеиновой кислоты и белка. Величины гетеротрофной нитрификации огромные. Создаются продукты с токсичным, ядовитым, канцерогенным, мутагенным действием и с химиотерапевтическим эффектом. По этой причине изучению процесса и выяснению его значения для гетеротрофных культур уделено большое внимание.

Образование химических соединений для создания энергии является хемосинтезом, благодаря которому растут и развиваются клетки. Хемоавтотрофные типы распространены в природе и наблюдаются в почве и водоемах. Производимые ими процессы совершаются в огромных масштабах и имеют важнейший смысл в круговороте азота.

Ученые прошлого века считали, что производительность нитрификаторов обогащает почву, поскольку они трансформируют аммоний в нитраты, которые легко всасываются растениями, а также увеличивают усвоение минералов. Растения, усваивая аммонийный азот и ионы аммония, лучше хранятся в почве, чем нитраты. Образовавшиеся нитраты подкисляют среду обитания, обедняют состав почвы по количеству азота.

Питание микроорганизмов

Бактерии нитрификаторы являются автотрофами, так как не используют экзогенные органические вещества. Основа с дрожжевым аутолизатом, серином и глутаматом в низкой концентрации влияет на рост бактерий. Это происходит из-за нитрита, находящегося в питательной среде. Окисление ацетата сокращается, но возрастает добавление его углерода в белок, аминокислоты и прочие компоненты.

В результате проведенных исследований получена информация о том, что бактерии переходят на гетеротрофное питание.

Среда обитания и опасность

Нитрифицирующие бактерии распространены в окружающей среде. Они присутствуют в грунте, разных субстратах и водоемах. Процесс их функционирования вносит существенный вклад в общий этап движения азота в природе.

Нитрификаторы обитают в простой минеральной среде, содержащей окисляемый субстрат в виде аммония, нитритов и углекислоты.


Нитрифицирующие бактерии довольно распространены в окружающей среде

В окружающем мире микроорганизмы обрабатывают неорганические вещества и создают условия для питания растений в грунте. Источником энергии для животных является флора. Человек питается растениями и животными. Остатки жизнедеятельности флоры и фауны служит пищей для бактерий. Круговорот замыкается.

Такой микроорганизм, как Нитрососайстис, выделен из вод Атлантики. Он относится к облигатным галлофилам и обитает в соленой среде. Уровень pH (реакция водорода) для роста бактерий равен 8,7, а оптимальное значение составляет 7,5.

Среди вида Сомонас распространены типы, имеющие температурный режим при 26 или около 40 °C, и штаммы, быстрорастущие при 4 °C. Благоприятным климатом является среда обитания (вода) 24−27 градусов. Должен быть устойчивый доступ кислорода и наличие водной растительности.

Простейшие бактерии относят к облигатным аэробам. Для окисления аммония в азотистую кислоту, а азотистой кислоты в азотную им необходим кислород. Место обитания не должно содержать органических соединений. В исследованиях подтверждено губительное действие глюкозы, гербицидов, мочевины, пептона, глицерина и другой органики на бактерии.


Простейшие бактерии относят к облигатным аэробам, тк им нужен кислород для переработки аммония

Некоторые штаммы нитробактерий при наличии органического составляющего окисляют аммоний, создавая гидроксиламин, нитриты и нитраты. Вследствие таких реакций появляются гидроксамовые кислоты. Бактерии выполняют процесс нитрификации разных соединений, в состав которых входит азот.

Объемы гетеротрофной нитрификации при особых обстоятельствах могут быть губительными. Опасность состоит в том, что образуются токсины, мутагены и канцерогены.

Применение в различных сферах

Использование в различных областях нитрифицирующих бактерий вносит свои достоинства и недостатки. Микроорганизмы создают благоприятные условия для обитания рыб в аквариуме, обогащения почвы, а также сельскохозяйственных процессов.

Биологический фильтр для аквариума

Нитробактерии играют важную роль в превращении токсического аммиака в нитраты. Это важно при запуске нового аквариума. Эти микроорганизмы составляют небольшую долю бактерий и являются биофильтром. Они размножаются на любой поверхности (наполнитель фильтра, грунт или растения). Если водорослей в аквариуме находится большое количество, тогда аквариум полностью считается биофильтром. Важно создать благоприятную обстановку для размножения полезных бактерий.


Нитробактерии превращают токсический аммиак в нитраты

Сократить популяцию бактерий в аквариуме могут дефицит кислорода, избыток углекислоты, снижение pH и использование дезинфекторов. Нитрифицирующие бактерии растений лишают питания водорослей. Живые бактерии для аквариума применяются во время подготовки резервуара к использованию.

Важность микроорганизмов велика , ведь они очищают воду от загрязнений, биологических и органических остатков, отложений и испражнений. Поэтому микрофлора в резервуарах, где они обитают, идеальная.

Нитрифицирующие бактерии - главные очистители обитаемых помещений с рыбками и моллюсками. Они активно размножаются в среде, насыщенной аммонием, нитритами, азотом и аммиаком.

Для запуска аквариума используются препараты марки «Сера», содержащие в составе живые нитрификаторы и вулканическую пыль - безупречную среду для скорейшего размножения и роста. Этот субстрат оседает на дно и становится частью грунта. В аквариум заселяются сразу несколько бактерий.

Большая часть продукции, поставляемой в специализированные зоомагазины, содержит культуры гетеротрофных бактерий.

Значение для сельского хозяйства

С целью повышения урожайности аграрии применяют всевозможные удобрения, содержащие нитрифицирующие бактерии.

Почва является идеальным субстратом для процессов роста, размножения растений и живых организмов, поэтому важно поддерживать ее правильное содержание и комплексный состав.

Биологическую обработку грунта проводят природные чистильщики - нитрифицирующие бактерии. Для них не обязателен доступ веществ из внешней среды - они могут вырабатывать их автономно. Например, автотрофным зеленым растениям нужен солнечный свет, а для нитробактерий безразличен.

Присутствуя в почве, перегное или водной среде, они превращают выделяемый аммиак в нитраты (соль азотной кислоты). Каждый этап проводится с помощью разных бактерий.


Биологическую обработку грунта проводят природные чистильщики - нитрифицирующие бактерии.

Процесс перехода аммиака в нитраты:

  • Окисление аммиака до нитрита. Этот процесс происходит не одним типом бактерий, а разными. Одни виды микроорганизмов превращают в нитрит, а другие - в нитрат. Важным условием должна быть температура от 4 градусов, влажность и обилие кислорода.
  • Окисление нитрита в нитрат.

Нитрификаторы положительно влияют на почву, повышая ее плодородность за счет расщепления аммония. Однако учеными выявлено также негативное влияние. Бактерии подкисляют почву, что не является благоприятным моментом, а также насыщают почву ионами аммония. Впоследствии почва истощается по количеству полезных веществ.

Энергетическим источником для хемотрофов являются разнообразные минеральные вещества. Экосистема создается искусственно, но для удачного развития запускают установленные процессы, регулировкой которых занимаются жители резервуара, например, аквариума.

Несмотря на крошечные размеры, эти живые организмы влияют на окружающий мир. Нитробактерии распространены в почвах, морской и пресной воде, играют важную роль в переработке сточных вод.

Аммиак, образующийся в почве, навозе и воде при разложении органических веществ, довольно быстро окисляется до азотистой, а затем азотной кислоты. Этот процесс получил название нитрификация.

До середины XIX в., точнее, до работ Л. Пастера явление образования нитратов объяснялось, как химическая реакция окисления аммиака атмосферным кислородом, причем предполагалось, что почва играет роль химического катализатора. Л. Пастер предположил, что образование нитратов - микробиологический процесс. Первые экспериментальные доказательства этого предположения были получены Т. Шлезингом и А. Мюнцем в 1879 г. Эти исследователи пропускали сточные воды через длинную колонку с песком и СаСО3. При фильтрации аммиак постепенно исчезал, и появлялись нитраты. Нагревание колонки или внесение антисептиков прекращало окисление аммиака.

Однако выделить культуры возбудителей нитрификации не удалось ни упомянутым исследователям, ни микробиологам, продолжавшим изучение нитрификации. Лишь в 1890-1892 гг. С. Н. Виноградский, применив особую методику, изолировал чистые культуры нитрификаторов. С. Н. Виноградский сделал допущение, что нитрифицирующие бактерии не растут на обычных питательных средах, содержащих органические вещества. Это было вполне правильным и объяснило неудачи его предшественников. Нитрификаторы оказались хемолитоавтотрофами, очень чувствительными к наличию в среде органических соединений. Эти микроорганизмы удалось выделить, используя минеральные питательные среды.

С. Н. Виноградский установил, что существуют две группы нитрификаторов - одна группа осуществляет окисление аммиака до азотистой кислоты (NH4+→NO2-) - первая фаза нитрификации, другая окисляет азотистую кислоту до азотной (NO2-→NO3-) - вторая фаза нитрификации.

Бактерии обеих групп в настоящее время относят к семейству Nitrobacteriaceae. Это одноклеточные грамотрицательные бактерии. Среди нитрифицирующих бактерий имеются виды с весьма различающейся морфологией - палочковидные, эллипсоидные, сферические, извитые и дольчатые, плеоморфные. Размеры клеток разных видов Nitrobacteriaceae колеблются от 0,3 до 1 мкм в ширину и от 1 до 6,5 мкм в длину. Имеются подвижные и неподвижные формы с полярным, субполярным и перитрихиальным жгутикованием. Размножаются в основном делением, за исключением Nitrobacter, который размножается почкованием. Почти у всех нитрификаторов имеется хорошо развитая система внутри - цитоплазматических мембран, значительно различающихся по форме и расположению в клетках разных видов. Эти мембраны подобны мембранам фотосинтезирующих пурпурных бактерий.

Бактерии первой фазы нитрификации представлены пятью родами: Nitrosomonas, Nitrosococcus, Nitrosospira, Nitrosolobus и Nitrosovibrio. Единственный микроорганизм, детально изученный к настоящему времени, - Nitrosomonas europaea.

Nitrosomonas представляет собой короткие овальные палочки размером 0,8 - 1X1-2 мкм. В жидкой культуре Nitrosomonas проходят ряд стадий развития. Две основные из них представлены подвижной формой и неподвижными зооглеями. Подвижная форма обладает субполярным жгутиком или пучком жгутиков. Помимо Nitrosomonas, описаны представители и других родов бактерий, вызывающие первую фазу нитрификации.

Вторую фазу нитрификации осуществляют представители родов Nitrobacter, Nitrospira и Nitrococcus. Наибольшее число исследований проведено с Nitrobacter winogradskii, однако описаны и другие виды (Nitrobacter agilis и др.).

Nitrobacter имеют удлиненную клиновидную или грушевидную форму, более узкий конец часто загнут в виде клювика. Согласно исследованиям Г. А. Заварзина, размножение Nitrobacter происходит путем почкования, причем дочерняя клетка бывает обычно подвижна, так как имеет один латерально расположенный жгутик. Известно чередование в цикле развития подвижной и неподвижной стадий. Описаны и другие бактерии, вызывающие вторую фазу нитрификации.

Нитрифицирующие бактерии обычно культивируют на простых минеральных средах, содержащих аммиак или нитриты (окисляемые субстраты) и углекислоту (основной источник углерода). В качестве источников азота эти организмы используют аммиак, гидроксиламин и нитриты.

Нитрифицирующие бактерии развиваются при pH 6-8,6, оптимум pH составляет 7,5-8. При pH ниже 6 и выше 9,2 эти бактерии не развиваются. Оптимальная температура развития нитрификаторов - 25-30°С. Изучение отношения различных штаммов Nitrosomonas europaea к температуре показало, что некоторые из них имеют оптимум развития при 26°С или около 40°С, а другие могут довольно быстро расти при 4°С.

Нитрификаторы - облигатные аэробы. С помощью кислорода они окисляют аммиак до азотистой кислоты (первая фаза нитрификации):

NH4++11/22О2→NO2-+H2O+2H+

А затем азотистую кислоту до азотной (вторая фаза нитрификации):

NO2-+1/2O2→NO3-

Предполагают, что процесс нитрификации проходит в несколько этапов. Первым продуктом окисления аммиака является гидроксилами, который затем превращается в нитроксил (NOH), либо пероксонитрит (ONOOH), который, в свою очередь, преобразуется в дальнейшем в нитрит или нитрит и нитрат.

Нитроксил, как и гидроксиламин, по-видимому, может димеризоваться в гипонитрит или превращаться в закись азота N2O - побочный продукт процесса нитрификации.

Кроме первой реакции (образования гидроксиламина из аммония), все последующие превращения сопровождаются синтезом макроэргических связей в виде АТФ, необходимых клеткам микроорганизмов для связывания СO2 и других биосинтетических процессов.

Фиксация СO2 нитрификаторами осуществляется через восстановительный пентозофосфатный цикл, или цикл Кальвина. В результате фиксации углекислоты образуются не только углеводы, но и другие важные для бактерий соединения - белки, нуклеиновые кислоты, жиры и т. д.

По существовавшим до последнего времени представлениям, нитрифицирующих бактерий относили к облигатным хемолитоавтотрофам.

Сейчас получены данные, свидетельствующие о способности нитрифицирующих бактерий использовать некоторые органические вещества. Так, отмечено стимулирующее действие на рост Nitrobacter в присутствии нитрита дрожжевого автолизата, пиридоксина, глютаминовой кислоты и серина. Поэтому предполагают, что нитрифицирующие бактерии обладают способностью переключаться с автотрофного на гетеротрофное питание. Нитрифицирующие бактерии все же не растут на обычных питательных средах, так как большое количество легкоусвояемых органических веществ, содержащихся в таких средах, задерживает их развитие.

Отрицательное отношение этих бактерий к органическому веществу в лабораторных условиях, казалось бы, противоречит естественным условиям их обитания. Известно, что нитрифицирующие бактерии хорошо развиваются, например, в черноземах, навозе, компостах, то есть в местах, где содержится много органического вещества.

Однако указанное противоречие легко устраняется, если сравнить количество легкоокисляемого углерода в почве с теми концентрациями органического вещества, которое нитрификаторы выдерживают в культурах, Так, органическое вещество почв представлено главным образом гуминовыми веществами, на которые приходится, например, в черноземе 71-91% общего углерода, а усвояемые водорастворимые органические вещества составляют не более 0,1% общего углерода. Следовательно, нитрификаторы не встречают в почве больших количеств легкоусвояемого органического вещества.

Этапность процесса нитрификации - характерный пример так называемого метабиоза, то есть такого рода трофических связей микробов, когда один микроорганизм развивается после другого на отходах его жизнедеятельности. Как было показано, аммиак - продукт жизнедеятельности аммонифицирующих бактерий используется Nitrosomonas, а нитриты, образующиеся последними, служат источником жизни для Nitrobacter.

Возникает вопрос о значении нитрификации для земледелия. Накопление нитратов происходит с неодинаковой интенсивностью на разных почвах. Однако этот процесс находится в прямой зависимости от плодородия почвы. Чем богаче почва, тем большее количество азотной кислоты она может накапливать. Существует метод определения доступного растениям азота в почве по показаниям ее нитрификационной способности. Следовательно, интенсивность нитрификации можно использовать для характеристики агрономических свойств почвы.

Вместе с тем при нитрификации происходит лишь перевод одного питательного для растений вещества - аммиака в другую форму - азотную кислоту. Нитраты, однако, обладают некоторыми нежелательными свойствами. В то время как ион аммония поглощается почвой, соли азотной кислоты легко вымываются из нее. Кроме того, нитраты могут восстанавливаться в результате денитрификации до N2, что также обедняет азотный запас почвы. Все это существенно снижает коэффициент использования нитратов растениями. В растительном организме соли азотной кислоты при их использовании для синтеза должны быть восстановлены, на что тратится энергия. Аммоний же используется непосредственно. В связи с этим ставится вопрос о подходах к искусственному снижению интенсивности процесса нитрификации путем использования специфических ингибиторов, подавляющих активность бактерий - нитрификаторов и безвредных для других организмов.

Следует отметить, что некоторые гетеротрофные микроорганизмы способны осуществлять нитрификацию. К гетеротрофным нитрификаторам относятся бактерии из родов Pseudomonas, Arthrobacter, Corynebacterium, Nocardia и некоторые грибы из родов Fusarium, Aspergillus, Penicillium, Cladosporium. Установлено, что Arthrobacter sp. окисляет в присутствии органических субстратов аммиак с образованием гидроксиламина, а затем нитрита и нитрата.

Некоторые бактерии способны вызывать нитрификацию таких азотсодержащих органических веществ, как амиды, амины, гидроксамовые кислоты, нитросоединения (алифатические и ароматические), оксимы и др.

Гетеротрофная нитрификация встречается в естественных условиях (почвах, водоемах и других субстратах). Она может приобретать главенствующее значение, особенно в атипичных условиях (например, при высоком содержании органических С - и N - соединений в щелочной почве и т. п.). Гетеротрофные микроорганизмы способствуют не только окислению азота в этих атипичных условиях, но и могут вызывать образование и накопление токсических веществ; веществ, обладающих канцерогенным и мутагенным действием, а также соединений с химиотерапевтическим действием. В связи с тем, что некоторые из этих соединений вредны для человека и животных даже при относительно низких концентрациях, следует тщательно изучить их образование в естественных условиях.

Нитрификация

Вводные пояснения. Под нитрификацией понимают про­цессы окисления аммиака до нитрита и нитрата. Эти превра­щения идут в две фазы. Вызывают их нитрифицирующие бак­терии главным образом двух родов:

Nitrosomonas: NH + 4 + l"/ 2 O 2 → NO - 2 + 2H + H 2 O

Nitrobacter: NO - 2 + "/ 2 О 2 → NO - 3

Энергию, выделяющуюся при окислении аммиака и ни­трита, нитрификаторы используют для ассимиляции диоксида углерода. Бактерии, осуществляющие данный процесс, отно­сятся к хемолитоавтотрофам и представляют собой облигатных аэробов.

Первая фаза нитрификации. Для выявления бактерий первой фазы нитрификации и определения относительного количества их в почве используют метод Виноградского на гелевых пластинах (см. 7.2.1).

Промытые и прокипяченные пластины кремнекислого ге­ля (в чашках Петри) пропитывают 3-5 мл среды Виноградско­го. Минеральная основа среды имеет следующий состав (г/200 мл дистиллированной воды): (NH 4) 2 SO 4 - 2,0; К 2 НРО 4 - 1,0; MgSO 4 - 0,5; NaCl - 0,4; FeSO 4 7Н 2 О - 0,4; MgCO 3 или СаСО 3 - 5,0. Источник азота (NH 4) 2 SO 4 - 2 г. Лучшие резуль­таты получают при замене (NH 4) 2 SO 4 на фосфорно-аммоний-но-магниевую соль - NH 4 MgPO 4 · MgCO 3 ; кроме того, важно растереть СаСО 3 перед приготовлением среды пестиком в сте­рильной ступке.

Питательную среду в чашках упаривают при 40-50 ºС до образования белой блестящей эмалевой поверхности, возни­кающей за счет равномерного распределения слоя MgCO 3 или СаСО 3 . Слой любого из этих веществ служит индикатором процесса нитрификации, так как в тех местах на геле, где раз­виваются нитрифицирующие бактерии, появляются зоны рас­творения карбонатов, в которых эти микроорганизмы и обнаруживаются.

По эмалевой поверхности пластин раскладывают опреде­ленное число комочков свежей почвы, для чего берут два часо­вых стекла и стерилизуют их фламбированием. Затем в одно часовое стекло помешают почву, а в другое наливают дистил­лированную воду. Палочкой с оттянутым концом, предвари­тельно слегка проведя ее над огнем и смочив водой, захватыва­ют комочки почвы (диаметром 1-2 мм) и по трафарету рас­кладывают их по поверхности эмалевых пластин.

Чашки помещают во влажную камеру и ставят в термо­стат при 28-30 ºС. Через некоторое время (спустя 7, 14, 21 сут), в зависимости от активности нитрифицирующих бактерий, вокруг отдельных комочков почвы появляются зоны растворения мела, свидетельствующие об обрастании комочков почвы ни­трифицирующими бактериями.

Чашки вынимают и подвергают анализу: определяют сте­пень обрастания комочков почвы нитрифицирующими бакте­риями (в %), изучают морфологию их представителей и про­дукты жизнедеятельности.



Степень обрастания комочков почвы определяют следую­щим образом. Общее число комочков почвы, разложенных на чашке, принимают за 100%. Затем подсчитывают число комоч­ков почвы, давших зоны растворения мела, и устанавливают, какой процент они составляют от общего числа комочков поч­вы. Полученная величина не дает представления об абсолют­ном количестве нитрифицирующих бактерий в почве. Однако если сопоставить степени обрастания ими комочков разных почв, то этот показатель позволит судить о том, в какой почве содержится больше нитрифицирующих бактерий.

Чтобы определить продукты жизнедеятельности бакте­рий первой фазы нитрификации, чистым ланцетом вырезают по 3 кусочка геля из зон растворения мела и с мест, в кото­рых мел не растворился, помещают их изолированно в лунки белой фарфоровой пластины или в фарфоровые чашки. Сна­чала делают пробы с кусочками геля контрольных участков, где мел не растворился. Пробу на аммиак выполняют с реак­тивом Несслера: гель приобретает желтовато-оранжевую ок­раску, что свидетельствует о присутствии аммиака. Затем проводят пробу на нитрит с реактивом Грисса или цинк-иод-крахмалом, добавляя каплю 10%-ной серной кис­лоты: гель остается без изменений, что указывает на отсут­ствие нитрита.

Аналогичные пробы делают с кусочками геля, взятыми из зон растворения мела (или MgCO 3). В этом случае реакция на аммиак с реактивом Несслера отрицательная, т. е. гель не окрашивается. Реактив Грисса окрашивает гель в красный цвет, а цинк-иод-крахмал в кислой среде - в темно-синий, что свидетельствует о появлении азотистой кислоты.

Для знакомства с возбудителями первой фазы нитрификации из зон рас­творения мела берут иглой немного ма­териала и готовят окрашенный препарат. При его микроскопировании можно об­наружить овальные клетки, похожие на ноль, - Nitrosomonas (рис. 23) и Nitrosospira. Первые встречаются в старопахот­ных почвах, вторые - в целинных. В почвах Европы чаще встречаются Nitrosomonas europea

Вторая фаза нитрификации. Бактерии, вызывающие вто­рую фазу нитрификации, можно наблюдать на чашках с куль­турой первой фазы при более длительном их выдерживании в термостате. После исчезновения аммиака образовавшийся нитрит может окисляться до нитрата. В этом легко убедиться по исчезновению в среде нитрита и появлению нитрата. Для этого вырезают чистым ланцетом два кусочка геля, помещают их в фарфоровые лунки и об исчезновении нитрита судят по отрицательной реакции с реактивом Грисса или цинк-иод-крахмалом в кислой среде. С другим кусочком геля проводят пробу на нитрат с дифениламином в растворе кон­центрированной серной кислоты. В присутствии азотной кис­лоты гель приобретает темно-синий цвет (реакцию на нитрат с дифениламином делают только в отсутствие нитрита).

В препарате, приготовленном из мест растворения мела, взятого с поверхности чашки, в этот период можно обнару­жить возбудителей второй фазы нитрификации - мелкие, слегка искривленные и угловатые клетки Nitrobacter.

В связи с тем, что коэффициент полезного действия хемо­синтеза у нитрифицирующих бактерий очень низкий, рост их клеточной массы незначителен и на препаратах, приготовленных обычным способом, они обнаруживаются не всегда или с трудом.

Выявление бактерий обеих фаз нитрификации по Теппер . Для выявления бактерий обеих фаз нитрификации из культу­ры на гелевых пластинах был разработан специальный прием. В чашку, в которой прошли процессы нитрификации, осто­рожно вливают 6-8 мл водопроводной воды, бактерии при этом поднимаются на ее поверхность. Ели к поверхности воды прикоснуться чистым обезжиренным предметным стеклом, то на нем останутся нитрифицирующие бактерии. После суш­ки и фиксации препарат красят фуксином и рассматривают под микроскопом с иммерсионной системой.

На препаратах из чашек, в которых прошли первая и вторая фазы нитрификации, можно легко обнаружить предста­вителей обоих родов нитрифицирующих бактерий и их спутни­ков, в частности бактерии рода Bactoderma, всегда сопровождающие вторую фазу нитрификации.

Для специального наблюдения за процессом второй фазы нитрификации опыт также можно ставить на гелевых пласти­нах. Их пропитывают 2-3 мл питательной среды следующего состава (г/200 мл дистиллированной воды): NaNO 2 - 1,0; Na 2 CO 3 (безводный) - 1,0; NaCI – 0,5; K 2 HPO 4 - 0,5; MgSO 4 7H 2 O - 0,5; FeSQ 4 7H 2 O - 0,4.

Среду упаривают при 50 ºС до исчезновения свободной воды и по поверхности геля, как и в предыдущем опыте, рас­кладывают комочки почвы. Затем после 20-30 сут инкубации при 28-30 ºС анализируют, как было описано выше.

). Впервые чистые культуры этих бактерий получил С.Н.Виноградский в 1892 г., установивший их хемолитоавтотрофную природу. В IX издании Определителя бактерий Берги все нитрифицирующие бактерии выделены в семейство Nitrobacteraceae и разделены на две группы в зависимости от того, какую фазу процесса они осуществляют. Первую фазу - окисление солей аммония до солей азотистой кислоты (нитритов) - осуществляют аммонийокисляющие бактерии (роды Nitrosomonas , Nitrosococcus , Nitrosolobus и др.):

NH4+ + 1,5O2 переходит в NO2- + Н2О + 2Н+

NO2- + 1/2*O2 переходит в NO3-

Группа нитрифицирующих бактерий представлена грамотрицательными организмами, различающимися формой и размером клеток, способами размножения, типом жгутикования подвижных форм, особенностями клеточной структуры, молярным содержанием ГЦ-оснований ДНК, способами существования.

Все нитрифицирующие бактерии - облигатные аэробы; некоторые виды - микроаэрофилы. Большинство - облигатные автотрофы , рост которых ингибируется органическими соединениями в концентрациях, обычных для гетеротрофов . С использованием 14С-соединений показано, что облигатные хемолитоавтотрофы могут включать в состав клеток некоторые органические вещества, но в весьма ограниченной степени. Основным источником углерода остается СО2, ассимиляция которой осуществляется в восстановительном пентозофосфатном цикле . Только для некоторых штаммов Nitrobacter показана способность к медленному росту в среде с органическими соединениями в качестве источника углерода и энергии.

Процесс нитрификации локализован на цитоплазматической и внутрицитоплазматических мембранах. Ему предшествует поглощение NH4+ и перенос его через ЦПМ с помощью медьсодержащей транслоказы. При окислении аммиака до нитрита атом азота теряет 6 электронов. Предполагается, что на первом этапе аммиак окисляется до гидроксиламина с помощью монооксигеназы, катализирующей присоединение к молекуле аммиака 1 атома О2; второй взаимодействует, вероятно, с НАД*Н2 , что приводит к образованию Н2О:

NH3 + О2 + НАД*Н2 переходит в NH2OH + Н2О + НАД+

NH2OH + О2 переходит в NO2- + Н2О + Н+

Электроны от NH2OH поступают в дыхательную цепь на уровне цитохрома с и далее на терминальную оксидазу. Их транспорт сопровождается переносом 2 протонов через мембрану, приводящим к созданию протонного градиента и синтезу АТФ . Гидроксиламин в этой реакции, вероятно, остается связанным с ферментом.

Вторая фаза нитрификации сопровождается потерей 2 электронов. Окисление нитрита до нитрата, катализируемое молибденсодержащим ферментом нитритоксидазой, локализовано на внутренней стороне ЦПМ и происходит следующим образом:

NO2- + Н2О переходит в NO3- + 2Н+ 2е

Электроны поступают на цитохром а1 и через цитохром с на терминальную оксидазу аа3, где акцептируются молекулярным кислородом ( рис. 98 , Б). При этом происходит перенос через мембрану 2Н+. Поток электронов от NO2- на О2 происходит с участием очень короткого отрезка дыхательной цепи. Так как Ео пары NO2/NO3- равен +420 мВ, восстановитель образуется в процессе энергозависимого обратного переноса электронов. Большая нагрузка на конечный участок дыхательной цепи объясняет высокое содержание цитохромов с и а у нитрифицирующих бактерий.

Многие хемоорганогетеротрофные бактерии, принадлежащие к родам Arthrobacter , Flavobacterium , Xanthomonas , Pseudomonas и др., способны окислять аммиак , гидроксиламин и другие восстановленные соединения азота до нитритов или нитратов . Процесс нитрификации этих организмов, однако, не приводит к получению ими энергии. Изучение природы этого процесса, получившего название гетеротрофной нитрификации, показало, что, возможно, он связан с разрушением образуемой бактериальными культурами

 


Читайте:



Какие продукты образуются и сколько молекул атф запасается в клетках Сколько молекул атф запасается в процессе

Какие продукты образуются и сколько молекул атф запасается в клетках Сколько молекул атф запасается в процессе

Энергетический обмен - это по-этапный распад сложных органических соединений, протекающий с выделением энергии, которая запасается в...

«У меня миллион навязчивых мыслей»: как жить с обсессивно-компульсивным расстройством?

«У меня миллион навязчивых мыслей»: как жить с обсессивно-компульсивным расстройством?

Представьте себе, что каждую секунду в вашей голове рождаются пугающие навязчивые мысли: вы боитесь наорать матом на коллегу, избить свою мать,...

Отчет по самообразованию "развитие сенсорных способностей детей младшего дошкольного возраста" Отчет по самообразованию воспитателя первой младшей группы

Отчет по самообразованию

Муниципальное дошкольное образовательное учреждение «Детский сад комбинированного вида «Космос» Города Балашова Саратовской области» ОТЧЕТ ПО...

Образование государства русь

Образование государства русь

1 2 3 4 5 6 7 8 9 … 32 Причины возникновения: У восточных славян родоплеменные, кровнородственные отношения сменяются на военные, политические и...

feed-image RSS