Главная - Радуга Михаил
Момент инерции спаренных уголков. Моменты инерции поперечного сечения. Понятие о крутящем моменте

§ 4.5. ВЫЧИСЛЕНИЕ МОМЕНТОВ ИНЕРЦИИ СЕЧЕНИЙ ПРОСТОЙ ФОРМЫ

Как указано в § 1.5, геометрические характеристики сложных сечений определяются путем расчленения их на ряд простых фигур, геометрические характеристики которых можно вычислить по соответствующим формулам или определить по специальным таблицам. Эти формулы получаются в результате непосредственного интегрирования выражений (8.5)-(10.5). Приемы их получения рассматриваются ниже на примерах прямоугольника, треугольника и круга.

Прямоугольное сечение

Определим осевой момент инерции прямоугольника высотой h и шириной b относительно оси проходящей через его основание (рис. 11.5, а). Выделим из прямоугольника линиями, параллельными оси элементарную полоску высотой и шириной b.

Площадь этой полоски расстояние от полоски до оси равно их. Подставим эти величины в выражение момента инерции (8.5):

Аналогичным путем для момента инерции относительно оси можно получить выражение

Для определения центробежного момента инерции выделим из прямоугольника линиями, параллельными осям (рис.

11.5, б), элементарную площадку величиной. Определим сначала центробежный момент инерции не всего прямоугольника, а лишь вертикальной полоски высотой h и шириной расположенной на расстоянии от оси

Произведение вынесено за знак интеграла, так как для всех площадок, принадлежащих рассматриваемой вертикальной полоске, оно постоянно.

Проинтегрируем затем выражение в пределах от до

Определим теперь осевые моменты инерции прямоугольника относительно осей у и, проходящих через центр тяжести параллельно сторонам прямоугольника (рис. 12.5). Для этого случая пределы интегрирования будут от до

Центробежный момент инерции прямоугольника относительно осей (рис. 12.5) равен нулю, так как эти оси совпадают с его осями симметрии.

Треугольное сечение

Определим осевые моменты инерции треугольника относительно трех параллельных осей, проходящих через его основание (рис. 13.5, а), центр тяжести (рис. 13.5,б) и вершину (рис. 13.5, е).

Для случая, когда ось проходит через основание треугольника (рис. 13.5, а),

Для случая, когда ось проходит через центр тяжести треугольника параллельно его основанию (рис. 13.5, б),

В случае, когда ось проходит через вершину треугольника параллельно его основанию (рис. 13.5, в),

Момент инерции значительно больше (в три раза), чем момент инерции так как основная часть площади треугольника более удалена от оси чем от оси

Выражения (17.5) - (19.5) получены для равнобедренного треугольника. Однако они верны и для неравнобедренных треугольников. Сравнивая, например, треугольники, показанные на рис. 13.5, а и 13.5, г, из которых первый равнобедренный, а второй неравнобедренный, устанавливаем, что размеры площадки и пределы, в которых изменяется у (от 0 до) для обоих треугольников одинаковы. Следовательно, моменты инерции для них также одинаковы. Аналогично можно показать, что осевые моменты инерции всех сечений, изображенных на рис. 14.5, одинаковы. Вообще смещение частей сечения параллельно некоторой оси не влияет на величину осевого момента инерции относительно этой оси.

Очевидно, что сумма осевых моментов инерции треугольника относительно осей показанных на рис. 13.5, а и 13.5, в, должна быть равна осевому моменту инерции прямоугольника относительно оси показанной на рис. 11.5, а. Это следует из того, что прямоугольник можно рассматривать как два треугольника, для одного из которых ось проходит через основание, а для другого - через вершину параллельно его основанию (рис. 15.5).

Действительно, по формулам (17.5) и (19.5)

что совпадает с выражением прямоугольника по формуле (12.5).

Сечение в форме круга

Определим осевой момент инерции круга относительно любой оси, проходящей через его центр тяжести. Из рис. 16.5, а следует

Очевидно, что относительно любой оси, проходящей через центр круга, осевой момент инерции будет равен и, следовательно,

По формуле (11.5) находим полярный момент инерции круга относительно его центра:

Формулу осевого момента инерции круга можно получить более простым путем, если предварительно вывести формулу для его полярного момента инерции относительно центра (точки О). Для этого выделим из круга элементарное кольцо толщиной радиусом и площадью (рис. 16.5,б).

Полярный момент инерции элементарного кольца относительно центра круга так как все элементарные площадки из которых состоит это кольцо, расположены на одинаковом расстоянии от центра круга. Следовательно,

Этот результат совпадает с полученным выше.

Моменты инерции (полярный и осевые) сечения, имеющего форму кругового кольца с наружным диаметром d и внутренним (рис. 17.5), можно определить как разности между соответствующими моментами инерции наружного и внутреннего кругов.

Полярный момент инерции кольца на основании формулы (21.5)

или, если обозначить

Аналогично, для осевых моментов инерции кольца

Момент инерции и момент сопротивления

При определении сечения строительных конструкций очень часто необходимо знать момент инерции и момент сопротивления для рассматриваемого поперечного сечения конструкции. Что такое момент сопротивления и как он связан с моментом инерции изложено отдельно. Кроме того, для сжимаемых конструкций также нужно знать значение радиуса инерции. Определить момент сопротивления и момент инерции, а иногда и радиус инерции для большинства поперечных сечений простой геометрической формы можно по давно известным формулам:

Таблица 1. Формы сечения, площади сечений, моменты инерции и моменты сопротивления для конструкций достаточно простых геометрических форм.

Обычно, этих формул достаточно для большинства расчетов, но случаи бывают всякие и сечение конструкции может быть не такой простой геометрической формы или положение осей, относительно которых нужно определить момент инерции или момент сопротивления, может быть не таким, тогда можно воспользоваться следующими формулами:

Таблица 2. Формы сечения, площади сечений, моменты инерции и моменты сопротивления для конструкций более сложных геометрических форм

Как видно из таблицы 2, высчитывать момент инерции и момент сопротивления для неравнополочных уголков достаточно сложно, да нет в этом необходимости. Для неравнополочных и равнополочных прокатных уголков, а также для швеллеров, двутавров и профильных труб есть сортаменты. В сортаментах значения момента инерции и момента сопротивления приводятся для каждого профиля.

Таблица 3. Изменения моментов инерции и моментов сопротивления в зависимости от положения осей.

Формулы из таблицы 3 могут понадобиться для расчета наклонных элементов кровли.

Было бы неплохо объяснить на наглядном примере для особо одаренных, типа меня, что такое момент инерции и с чем его едят. На специализированных сайтах как-то всё очень запутанно, а у Дока есть явный талант довести информацию, быть может не самую сложную, но очень грамотно и понятно

В принципе, что такое момент инерции и откуда он взялся, достаточно подробно объяснено в статье “Основы сопромата, расчетные формулы”, здесь лишь повторюсь: “W – это момент сопротивления поперечного сечения балки, другими словами, площадь сжимаемой или растягиваемой части сечения балки, умноженная на плечо действия равнодействующей силы”. Момент сопротивления необходимо знать для расчетов конструкции на прочность, т.е. по предельным напряжениям. Момент инерции необходимо знать для определения углов поворота поперечного сечения и прогиба (смещения) центра тяжести поперечного сечения, так как максимальные деформации возникают в самом верхнем и в самом нижнем слое изгибаемой конструкции, то определить момент инерции можно, умножив момент сопротивления на расстояние от центра тяжести сечения до верхнего или нижнего слоя, поэтому для прямоугольных сечений I=Wh/2. При определении момента инерции сечений сложных геометрических форм сначала сложная фигура разбивается на простейшие, затем определяются площади сечения этих фигур и моменты инерции простейших фигур, затем площади простейших фигур умножаются на квадрат расстояния от общего центра тяжести сечения до центра тяжести простейшей фигуры. Момент инерции простейшей фигуры в составе сложного сечения равен моменту инерции фигуры + квадрат расстояния умноженный на площадь. Затем полученные моменты инерции суммируются и получается момент инерции сложного сечения. Но это максимально упрощенные формулировки (хотя, соглашусь, все равно выглядит достаточно мудрено).

Момент инерции и момент сопротивления - Доктор Лом


При определении сечения строительных конструкций очень часто необходимо знать момент инерции и момент сопротивления для поперечного сечения конструкции. Определить момент сопротивления и момент энерции для абсолютного большинства поперечных сечений простой геометрической формы можно по давно известным формулам

Глава 5. МОМЕНТЫ ИНЕРЦИИ ПЛОСКИХ СЕЧЕНИЙ

Любое плоское сечение характеризуется рядом геометрических характеристик: площадью, координатами центра тяжести, статическим моментом, моментом инерции и др.

Статические моменты относительно осей х и y равны:

Статические моменты обычно выражаются в кубических сантиметрах или метрах и могут иметь как положительные, так и отрицательные значения. Ось, относительно которой статический момент равен нулю, называется центральной. Точка пересечения центральных осей называется центром тяжести сечения . Формулы для определения координат центра тяжести x c и y c сложного сечения, разбитого на простейшие составные части, для которых известны площади А i и положение центра тяжести x ci и y ci ,имеют вид

Величина момента инерции характеризует сопротивляемость стержня деформации (кручения, изгиба) в зависимости от размеров и формы поперечного сечения. Различают моменты инерции:

– осевые, определяемые интегралами вида

Осевые и полярные моменты инерции всегда положительны и не

обращаются в нуль. Полярный момент инерции I p равен сумме осевых моментов инерции I х и I у относительно любой пары взаимно перпендикулярных осей х и у :

Центробежный момент инерции может быть положительным, отрицательным и равным нулю. Размерность моментов инерции - см 4 или м 4 . Формулы для определения моментов инерции простых сечений относительно центральных осей приведены в справочниках. При вычислении моментов инерции сложных сечений часто используют формулы перехода от центральных осей простых сечений к другим осям, параллельным центральным.

где – моменты инерции простых сечений относительно центральных осей;

m, n – расстояния между осями (рис. 18).

Рис. 18. К определению моментов инерции относительно осей,

Важное значение имеют главные центральные оси сечения. Главными центральными называются две взаимно перпендикулярные оси, проходящие через центр тяжести сечения, относительно которых центробежный момент инерции равен нулю, а осевые моменты инерции имеют экстремальные значения. Главные моменты инерции обозначаются I u (max) и I v (min) и определяются по формуле

Положение главных осей определяется углом α , который находится из формулы

Угол α откладывается от оси с большим неглавным моментом инерции; положительное значение – против часовой стрелки.

Если сечение имеет ось симметрии, то эта ось является главной. Другая главная ось перпендикулярна оси симметрии. На практике часто используются сечения, составленные из нескольких прокатных профилей (двутавр, швеллер, уголок). Геометрические характеристики этих профилей приведены в таблицах сортамента. Для неравнобокого и равнобокого уголков центробежный момент инерции относительно центральных осей, параллельных полкам, определяется по формуле

Обратите внимание на обозначение главных центральных осей в таблице сортамента для уголков. Знак I xy для уголка зависит от положения его в сечении. На рис.19 показаны возможные положения уголка в сечении и приведены знаки для I xy .

Рис. 19. Возможные положения уголка в сечении

Определить I u , I v и положение главных центральных осей сечения

Сложное сечение состоит из двух прокатных профилей. Выписка из таблиц сортамента (прил. 5) приведена на рис. 21.

В качестве вспомогательных примем оси, проходящие по внешним

сторонам швеллера (оси x B , y B , см. рис. 20).Координаты центра тяжести сечения:

(вычислите самостоятельно).

Рис. 20. Положение главных центральных осей инерции

U и V сложного сечения

В качестве вспомогательных можно было бы выбрать, например, центральные оси швеллера. Тогда несколько сократится объем вычислений.

Осевые моменты инерции:

Обратите внимание, что неравнобокий уголок в сечении расположен

иначе, чем показано в таблице сортаментов. Значение вычислите самостоятельно.


№ 24 180 x 110 x 12

Рис. 21. Значения геометрических характеристик прокатных профилей:

а – швеллера № 24; б – неравнобокого уголка 180 x 110 x 12

Центробежные моменты инерции:

– для швеллера (есть оси симметрии);

– для уголка,

знак минус – в связи с положением уголка в сечении;

– для всего сечения:

Проследите назначение знаков у n и m . От центральных осей швеллера переходим к общим центральным осям сечения, поэтому + m 2

Главные моменты инерции сечения:

Положение главных центральных осей сечения:

; α = 55 о 48 ′ ;

Проверка правильности вычисления величин I u , I v и α производится по формуле

Угол α для этой формулы отсчитывается от оси u .

Рассмотренное сечение имеет наибольшую сопротивляемость изгибу относительно оси u и наименьшую – относительно оси v .


Глава 5. МОМЕНТЫ ИНЕРЦИИ ПЛОСКИХ СЕЧЕНИЙ Любое плоское сечение характеризуется рядом геометрических характеристик: площадью, координатами центра тяжести, статическим моментом, моментом инерции и

Введем декартову прямоугольную систему координат O xy . Рассмотрим в плоскости координат произвольное сечение (замкнутую область) с площадью A (рис. 1).

Статическими моментами

Точка C с координатами (x C , y C)

называется центром тяжести сечения .

Если оси координат проходят через центр тяжести сечения, то статические моменты сечения равны нулю:

Осевыми моментами инерции сечения относительно осей x и y называются интегралы вида:

Полярным моментом инерции сечения относительно начала координат называется интеграл вида:

Центробежным моментом инерции сечения называется интеграл вида:

Главными осями инерции сечения называются две взаимно перпендикулярные оси, относительно которых I xy =0. Если одна из взаимно перпендикулярных осей является осью симметрии сечения, то I xy =0 и, следовательно, эти оси - главные. Главные оси, проходящие через центр тяжести сечения, называются главными центральными осями инерции сечения

2.Теорема Штейнера-Гюйгенса о параллельном переносе осей

Теорема Штейнера-Гюйгенса (теорема Штейнера).
Осевой момент инерции сечения I относительно произвольной неподвижной оси x равен сумме осевого момента инерции этого сечения I с относительной параллельной ей оси x * , проходящей через центр масс сечения, и произведения площади сечения A на квадрат расстояния d между двумя осями.

Если известны моменты инерции I x и I y относительно осей x и y, то относительно осей ν и u, повернутых на угол α, моменты инерции осевые и центробежный вычисляют по формулам:

Из приведенных формул видно, что

Т.е. сумма осевых моментов инерции при повороте взаимно перпендикулярных осей не меняется, т.е.оси u и v, относительно которых центробежный момент инерции сечения равен нулю, а осевые моменты инерции І u и I v имеют экстремальные значения max или min, называют главными осями сечения. Главные оси, проходящие через центр тяжести сечения, называются главными центральными осями сечения . Для симметричных сечений оси их симметрии всегда являются главными центральными осями. Положение главных осей сечения относительно других осей определяют, используя соотношение:

где α 0 – угол, на который надо развернуть оси x и y, чтобы они стали главными (положительный угол принято откладывать против хода часовой стрелки, отрицательный – по ходу часовой стрелки). Осевые моменты инерции относительно главных осей называются главными моментами инерции :

знак плюс перед вторым слагаемым относится к максимальному моменту инерции, знак минус – к минимальному.

При определении моментов инерции составного сечения последнее разбивают на простые фигуры, у которых известны положения центров тяжести и моменты инерции относительно собственных центральных осей. По формулам (2.5) находят координаты центра тяжести всего сечения в системе произвольно выбранных вспомогательных осей. Параллельно этим осям проводят центральные оси, относительно которых определяют осевые и центробежный моменты инерции по формулам (2.6). Моменты инерции относительно главных центральных осей определяются по формуле (2.12), а положение главных центральных осей - по формулам (2.11).

Пример 2.1. Определим моменты инерции относительно главных центральных осей поперечного сечения двутавровой балки 130, усиленной двумя стальными листами сечением 200 х 20 мм (рис. 2.12).

Оси симметрии Ох, Оу являются главными центральными осями всего сечения. Выпишем из сортамента (см. приложение) значения площади и моментов инерции сечения двутавра относительно осей Ох, Оу:

Моменты инерции сечений листов относительно собственных центральных осей определим по формулам (2.14):

Площадь всего сечения равна F = 46,5 + 2 20 2 = 126,5 см 2 .

Моменты инерции сечения относительно главных центральных осей Ох, Оу определяются по формулам (2.6):

Пример 2.2. Определим моменты инерции относительно главных центральных осей поперечного сечения стойки стропильной фермы из двух равнобоких уголков 1_70х70х8, составленных крестообразно (рис. 2.13). Совместная работа уголков обеспечивается соединительными планками.

Координаты центра тяжести сечения уголка, значения площади и моментов инерции относительно собственных центральных осей Ох^ и Оу 0 приведены в сортаменте (см. приложение):

Расстояние от центра тяжести О всего сечения до центра тяжести уголка равно а = (2,02 + 0,4)л/2 = 3,42 см.

Площадь всего сечения равна F = 2 10,7 = 21,4 см 2 .

Моменты инерции относительно главных центральных осей, которыми являются оси симметрии Ох, Оу, определяются по формулам (2.6):

Пример 2.3. Определим положение центра тяжести и моменты инерции относительно главных центральных осей поперечного сечения балки, составленной из двух швеллеров х ] и О х у { . Тогда по формулам (2.5) получим:


Эти величины и координаты центров тяжести швеллера и уголка в системе координат Оху показаны на рис. 2.16 и соответственно равны:

Определим по формулам (2.6) моменты инерции сечения относительно центральных осей Ох и Оу


По формулам (2.12) и (2.11) найдем величины главных моментов инерции и углы наклона главных осей 1 и 2 к оси Ох:


Осевым (или экваториальным) моментом инерции сечения относительно некоторой оси называется взятая по всей его площади F сумма произведений элементарных площадок на квадраты их расстояний от этой оси, т. е.

Полярным моментом инерции сечения относительно некоторой точки (полюса) называется взятая по всей его площади F сумма произведений элементарных площадок на квадраты их расстояний от этой точки, т. е.

Центробежным моментом инерции сечения относительно некоторых двух взаимно перпендикулярных осей называется взятая по всей его площади F сумма произведений элементарных площадок на их расстояния от этих осей, т.е.

Моменты инерции выражаются в и т.д.

Осевые и полярные моменты инерции всегда положительны, так как в их выражения под знаки интегралов входят величины площадок (всегда положительные) и квадраты расстояний этих площадок от данной оси или полюса.

На рис. 9.5, а изображено сечение площадью F и показаны оси у и z. Осевые моменты инерции этого сечения относительно осей у :

Сумма этих моментов инерции

и, следовательно,

Таким образом, сумма осевых моментов инерции сечения относительно двух взаимно перпендикулярных осей равна полярному моменту инерции этого сечения относительно точки пересечения указанных осей.

Центробежные моменты инерции могут быть положительными, отрицательными или равными нулю. Так, например, центробежный момент инерции сечения, показанного на рис. 9.5, а, относительно осей у и положителен, так как для основной части этого сечения, расположенной в первом квадранте, значения , а следовательно, и положительны.

Если изменить положительное направление оси у или на обратное (рис. 9.5,б) или повернуть обе эти оси на 90° (рис. 9.5, в), то центробежный момент инерции станет отрицательным (абсолютная величина его не изменится), так как основная часть сечения будет тогда располагаться в квадранте, для точек которого координаты у положительны, а координаты z отрицательны. Если изменить положительные направления обеих осей на обратные, то это не изменит ни знак, ни величину центробежного момента инерции.

Рассмотрим фигуру, симметричную относительно одной или нескольких осей (рис. 10.5). Проведем оси так, чтобы хотя бы одна из них (в данном случае ось у) совпадала с осью симметрии фигуры. Каждой площадке расположенной справа от оси соответствует в этом случае такая же площадка расположенная симметрично первой, но слева от оси у. Центробежный момент инерции каждой пары таких симметрично расположенных площадок равен:

Следовательно,

Таким образом, центробежный момент инерции сечения относительно осей, из которых одна или обе совпадают с его осями симметрии, равен нулю.

Осевой момент инерции сложного сечения относительно некоторой оси равен сумме осевых моментов инерции составляющих его частей относительно этой же оси.

Аналогично центробежный момент инерции сложного сечения относительно любых двух взаимно перпендикулярных осей равен сумме центробежных моментов инерции составляющих его частей относительно этих же осей. Также и полярный момент инерции сложного сечения относительно некоторой точки равен сумме полярных моментов инерции составляющих его частей относительно той же точки.

Следует иметь в виду, что нельзя суммировать моменты инерции, вычисленные относительно различных осей и точек.


http//:www.svkspb.nm.ru

Геометрические характеристики плоских сечений

Площадь : , dF - элементарная площадка.

Статический момент элемента площади dF относительно оси 0x
- произведение элемента площади на расстояние "y" от оси 0x: dS x = ydF

Просуммировав (проинтегрировав) такие произведения по всей площади фигуры, получаем статические моменты относительно осей y и x:
;
[см 3 , м 3 , т.д.].

Координаты центра тяжести :
. Статические моменты относительно центральных осей (осей, проходящих через центр тяжести сечения) равны нулю. При вычислении статических моментов сложной фигуры ее разбивают на простые части, с известными площадями F i и координатами центров тяжести x i , y i .Статический момент площади всей фигуры = сумме статических моментов каждой ее части:
.

Координаты центра тяжести сложной фигуры:

М
оменты инерции сечения

Осевой (экваториальный) момент инерции сечения - сумма произведений элементарных площадок dF на квадраты их расстояний до оси.

;
[см 4 , м 4 , т.д.].

Полярный момент инерции сечения относительно некоторой точки (полюса) - сумма произведений элементарных площадок на квадраты их расстояний от этой точки.
; [см 4 , м 4 , т.д.]. J y + J x = J p .

Центробежный момент инерции сечения - сумма произведений элементарных площадок на их расстояния от двух взаимно перпендикулярных осей.
.

Центробежный момент инерции сечения относительно осей, из которых одна или обе совпадают с осями симметрии, равен нулю.

Осевые и полярные моменты инерции всегда положительны, центробежные моменты инерции могут быть положительными, отрицательными или равными нулю.

Момент инерции сложной фигуры равен сумме моментов инерции составных ее частей.

Моменты инерции сечений простой формы

П
рямоугольное сечение Круг

К


ольцо

Т
реугольник

р
авнобедренный

Прямоугольный

т
реугольник

Четверть круга

J y =J x =0,055R 4

J xy =0,0165R 4

на рис. (-)

Полукруг

М

оменты инерции стандартных профилей находятся из таблиц сортамента:

Д
вутавр
Швеллер Уголок

М

оменты инерции относительно параллельных осей :

J x1 =J x + a 2 F;

J y1 =J y + b 2 F;

момент инерции относительно любой оси равен моменту инерции относительно центральной оси, параллельной данной, плюс произведение площади фигуры на квадрат расстояния между осями. J y1x1 =J yx + abF; ("a" и "b" подставляют в формулу с учетом их знака).

Зависимость между моментами инерции при повороте осей :

J x1 =J x cos 2  + J y sin 2  - J xy sin2; J y1 =J y cos 2  + J x sin 2  + J xy sin2;

J x1y1 =(J x - J y)sin2 + J xy cos2 ;

Угол >0, если переход от старой системы координат к новой происходит против час.стр. J y1 + J x1 = J y + J x

Экстремальные (максимальное и минимальное) значения моментов инерции называются главными моментами инерции . Оси, относительно которых осевые моменты инерции имеют экстремальные значения, называются главными осями инерции . Главные оси инерции взаимно перпендикулярны. Центробежные моменты инерции относительно главных осей = 0, т.е. главные оси инерции - оси, относительно которых центробежный момент инерции = 0. Если одна из осей совпадает или обе совпадают с осью симметрии, то они главные. Угол, определяющий положение главных осей:
, если  0 >0  оси поворачиваются против час.стр. Ось максимума всегда составляет меньший угол с той из осей, относительно которой момент инерции имеет большее значение. Главные оси, проходящие через центр тяжести, называются главными центральными осями инерции . Моменты инерции относительно этих осей:

J max + J min = J x + J y . Центробежный момент инерции относительно главных центральных осей инерции равен 0. Если известны главные моменты инерции, то формулы перехода к повернутым осям:

J x1 =J max cos 2  + J min sin 2 ; J y1 =J max cos 2  + J min sin 2 ; J x1y1 =(J max - J min)sin2;

Конечной целью вычисления геометрических характеристик сечения является определение главных центральных моментов инерции и положения главных центральных осей инерции. Радиус инерции -
; J x =Fi x 2 , J y =Fi y 2 .

Если J x и J y главные моменты инерции, то i x и i y - главные радиусы инерции . Эллипс, построенный на главных радиусах инерции как на полуосях, называется эллипсом инерции . При помощи эллипса инерции можно графически найти радиус инерции i x1 для любой оси х 1 . Для этого надо провести касательную к эллипсу, параллельную оси х 1 , и измерить расстояние от этой оси до касательной. Зная радиус инерции, можно найти момент инерции сечения относительно оси х 1:
. Для сечений, имеющих более двух осей симметрии (например: круг, квадрат, кольцо и др.) осевые моменты инерции относительно всех центральных осей равны между собой, J xy =0, эллипс инерции обращается в круг инерции.

Моменты сопротивления.

Осевой момент сопротивления - отношение момента инерции относительно оси к расстоянию от нее до наиболее удаленной точки сечения.
[см 3 , м 3 ]

Особенно важны моменты сопротивления относительно главных центральных осей:

прямоугольник:
; круг: W x =W y =
,

трубчатое сечение (кольцо): W x =W y =
, где = d Н /d B .

Полярный момент сопротивления - отношение полярного момента инерции к расстоянию от полюса до наиболее удаленной точки сечения:
.

Для круга W р =
.

 


Читайте:



Презентация "герой сталинградской битвы василий григорьевич зайцев"

Презентация

Подвиги героев сталинградаГерои участники Сталинградской битвыНиколай Сердюков 17 апреля 1943г. младший сержант, командир стрелкового отделения...

Маргинал или изгой общества Кто это такой

Маргинал или изгой общества Кто это такой

Цель : учить различать названия предметов по вопросам “кто это?”, “что это?” Задачи: Образовательные:Соотношение вопроса и ответа; Развитие...

Целебные свойства марганцовки — полезные советы

Целебные свойства марганцовки — полезные советы

Марганец - металл серебристо-белого цвета. Наряду с железом и его сплавами относится к чёрным металлам. Известны пять аллотропных модификаций...

Подготовка к егэ по обществознанию

Подготовка к егэ по обществознанию

Предварительный просмотр:5. Культура и духовная сфера. I. Культура (от лат. – «культура» - «возделывание, воспитание») Черты культуры :...

feed-image RSS