Главная - Вербер Бернар
HOX гены: общие сведения. Новое в науке о знаменитых Hox-генах, регуляторах развития Роль hox генов в индивидуальном развитии
Эволюция [Классические идеи в свете новых открытий] Марков Александр Владимирович

Hox -гены обрели свободу - и змеи потеряли ноги

Hox -гены обрели свободу - и змеи потеряли ноги

Напоследок рассмотрим исследование, проливающее свет на роль Hox -генов в эволюции позвоночных. Как известно, важнейшая функция Hox -генов состоит в том, что они подробно размечают эмбрион вдоль передне-задней оси. Дальнейшая судьба эмбриональных клеток, оказавшихся в той или иной части эмбриона, зависит от набора Hox -генов, экспрессирующихся в этой части. Для каждого Hox -гена характерна своя область экспрессии. Например, гены Hox12 и Hox13 , как правило, работают только в задней части эмбриона, которая в дальнейшем станет хвостом; гены Hox10 у некоторых позвоночных работают от заднего конца эмбриона до той черты, которая станет границей между грудным отделом (где на позвонках есть ребра) и поясничным, где ребра не развиваются. «Hox -код», определяющий план строения организма, сложен и не совсем одинаков у разных групп позвоночных. Вряд ли можно сомневаться в том, что многие крупные эволюционные преобразования, затрагивающие план строения, были связаны с изменениями в структуре и экспрессии Hox -генов. Однако хорошо изученных примеров, иллюстрирующих эту связь, пока немного.

Hox-гены дрозофилы и человека. Прямоугольниками обозначены гены в том порядке, в каком они расположены в хромосомах. У мухи один набор Hox-генов, у человека - четыре, частично дублирующие друг друга (они образовались из одного в результате двух полногеномных дупликаций). Кластеры A, B, C, D находятся на разных хромососмах (у мыши это хромосомы № 6, 11, 15 и 2, у человека - № у, 17, 2, 12). У змей, в отличие от мыши и человека, в кластере D отсутствует 12-й ген (Hoxd12). На изображениях мухи и зародыша человека области экспрессии соответствующих генов окрашены теми же цветами, что и сами гены. По последним данным, соответствие между Hox-генами членистоногих и позвоночных несколько менее однозначно, чем показано на этой схеме.

У многих животных, в том числе у позвоночных, Hox -гены в геноме располагаются кластерами, т. е. группами вплотную друг другу. Самое удивительное, что порядок расположения генов в Hox -кластерах часто (хотя и не всегда) совпадает с распределением областей экспрессии вдоль передне-задней оси: впереди находятся «головные» гены, за ними следуют гены, отвечающие за формирование средних участков тела, а замыкают кластер «задние» гены, управляющие развитием задних частей туловища. По-видимому, это связано со способом регуляции экспрессии Hox -генов: участок ДНК, где находится Hox -кластер, постепенно «раскрывается», становясь доступным для транскрипции по мере движения от переднего конца тела к заднему. Поэтому у переднего конца тела экспрессируются только передние Hox -гены, а чем ближе к хвосту, тем более задние гены включаются в работу. Удобный способ регуляции генов, отвечающих за разметку эмбриона вдоль передне-задней оси!

У предков позвоночных, как у современного ланцетника, в геноме был один Hox -кластер, включающий 14 генов. На ранних этапах эволюции позвоночных произошло две полногеномные дупликации. В результате позвоночные приобрели четыре Hox -кластера вместо одного. Это открыло перед позвоночными большие эволюционные возможности (см. главу 5). Отдельные Hox -гены в некоторых кластерах были утрачены, но в целом их набор и порядок расположения остался сходным во всех четырех кластерах. Паралогичные гены (т. е. копии одного и того же Hox -гена в разных Hox -кластерах) приобрели немного различающиеся функции, что дало возможность тонко регулировать эмбриональное развитие и облегчило развитие новых планов строения.

Биологи из Швейцарии, Новой Зеландии и США изучили работу Hox -генов у чешуйчатых рептилий (отряд Squamata ) (Di-Poi et al., 2010 ). Этот отряд, объединяющий ящериц и змей, интересен разнообразием планов строения и вариабельностью признаков, связанных с передне-задней дифференцировкой туловища (относительная длина отделов тела, число позвонков в них и т. п.) Поэтому логично было предположить, что Hox -кластеры чешуйчатых должны обладать специфическими особенностями и что Hox -гены ящериц и змей должны различаться.

Ранее было показано, что области экспрессии передних Hox -генов у змей расширились в заднем направлении по сравнению с другими позвоночными. Это хорошо согласуется с общим удлинением тела. Кроме того, было установлено, что правило колинеарности (т. е. одинаковый порядок расположения генов в кластере и областей их экспрессии в эмбрионе) у змей строго соблюдается.

Исследователи сосредоточились на задних Hox -генах (от 10-го до 13-го). Главными объектами исследования были хлыстохвостая ящерица Aspidoscelis uniparens и маисовый полоз Elaphe guttata . Кроме того, были отсеквенированы Hox -кластеры нескольких других ящериц, гаттерии и черепахи. Для сравнения использовались Hox -кластеры курицы, человека, мыши и лягушки.

Набор задних Hox -генов у всех исследованных видов оказался одинаковым, если не считать того, что у змей и лягушек «потерялся» ген Hoхd12 (12-й Hox -ген из кластера D ). Важные изменения были обнаружены в регуляторных участках Hox -кластеров. Оказалось, что все чешуйчатые рептилии утратили регуляторный участок между генами Hoхd13 и Evх2 , а змеи вдобавок потеряли консервативный некодирующий элемент между Hoхd12 и Hoхd13 и некоторые регуляторные участки в других Hox -кластерах. Неожиданным результатом оказалось присутствие в Hox -кластерах чешуйчатых множества встроившихся мобильных генетических элементов. В результате общая длина задней части Hox -кластеров у чешуйчатых значительно выросла по сравнению с другими наземными позвоночными.

Все это, по-видимому, говорит о том, что у чешуйчатых ослабли эволюционные ограничения, препятствующие накоплению изменений в задней части Hox -кластеров. Очищающий отбор, отбраковывающий подобные изменения у других позвоночных, в эволюции ящериц и змей действовал менее эффективно. Этот вывод подтвердился и в ходе анализа кодирующих участков Hox -генов. В этих участках у ящериц, и особенно у змей, по сравнению с другими позвоночными накопилось много значимых замен. Одни из них, по-видимому, зафиксировались случайно, из-за ослабления очищающего отбора, тогда как другие закрепились под действием положительного отбора, т. е. были полезными.

Изучение характера экспрессии задних Hox -генов у эмбрионов ящерицы и полоза подтвердило предположение о том, что изменения плана строения в эволюции чешуйчатых были тесно связаны с изменениями в работе задних Hox -генов.

У ящерицы, как и у других наземных позвоночных, передний край области экспрессии генов Hoxa10 и Hoxc10 в точности соответствует границе между грудным и поясничным отделами. Одной из функций этих генов является подавление развития ребер. У змей нет поясничного отдела, а на бывших крестцовых позвонках (у змей они называются клоакальными) имеются особые раздвоенные ребра. По-видимому, эти особенности связаны с тем, что Hox -гены у предков змей утратили способность останавливать рост ребер.

Область экспрессии Hoxa10 и Hoxc10 у полоза заходит далеко в грудной отдел. Эти гены отвечают также за своевременное прекращение роста грудного отдела. По-видимому, эта их функция у змей тоже ослаблена, что могло быть одной из причин удлинения грудного отдела у змей по сравнению с их предками - ящерицами. Удлинение хвостового отдела у змей связано с тем, что из четырех генов, «тормозящих» рост хвоста у ящериц (Hoxa13 , Hoxc13 , Hoxd13 , Hoxd12 ) один ген у змей полностью утрачен (Hoxd12 ), а два других (Hoxa13 , Hoxd13 ) не участвуют в передне-задней «разметке» эмбриона и используются только в формировании половых органов.

Многочисленные случаи независимой утраты и частичной редукции конечностей у чешуйчатых тоже могут быть связаны с тем, что в этом отряде задние Hox -гены получили нетипичную для других животных эволюционную «свободу». На них стал слабее действовать очищающий отбор, что позволило быстро накапливать мутации.

Области экспрессии задних Hox-генов у ящерицы и змеи. У ящерицы перед хвостовыми позвонками расположены два крестцовых (показаны темно-серым цветом), затем следует один рудиментарный поясничный позвонок (белый), а дальше идут грудные позвонки (серые). У змеи нет поясничного отдела, а вместо крестцовых имеются четыре клоакальных позвонка с раздвоенными ребрами (темно-серые). Вертикальными прямоугольниками показаны области экспрессии задних Hox-генов. Из Di-Poi et al., 2010.

Известно, что задние Hox -гены играют ключевую роль не только в оформлении задних отделов туловища, но и в развитии конечностей. Поэтому некоторые мутации этих генов, ведущие, например, к удлинению тела или к редукции поясничного отдела, теоретически могут приводить и к таким побочным эффектам, как редукция конечностей. Удлинение тела в сочетании с редукцией конечностей встречается и в других группах позвоночных (например, у некоторых амфибий). Было ли это связано с такими же изменениями в работе Hox -генов, как у змей, или с другими, покажут дальнейшие исследования.

Эволюционная биология развития - быстро развивающаяся дисциплина, от которой следует ожидать важнейших научных прорывов. Расшифровка генно-регуляторных сетей, управляющих развитием, - одна из самых насущных задач биологии. Ее решение позволит понять не только соотношение между генотипом и фенотипом, но и важнейшие правила и закономерности эволюции сложных организмов. Когда эти правила, известные нам сегодня лишь в общих чертах, будут изучены досконально, вплоть до построения строгих математических моделей, перед человечеством откроются небывалые возможности. Проектирование «с чистого листа» биологических систем с нужными нам свойствами - лишь одна из них. Другая - совершенствование нашей собственной природы. Все это будет. Нужно лишь четко уяснить, для каких целей это нужно будущему человечеству, и надеяться, что культурное, социальное и морально-этическое развитие человечества к тому времени исключит возможность использования этих открытий во вред.

Из книги Удивительная биология автора Дроздова И В

Морские змеи Около 350 млн лет тому назад дышащий воздухом сородич целаканта – латимерий выкарабкался из воды на своих неуклюжих кистеперых плавниках и стал первым позвоночным, начавшим жить на суше. Растения и беспозвоночные уже успели распространиться там, проникнув с

Из книги Экспериментальные исследования способностей животных к количественным оценкам предметного мира автора Резникова Жанна Ильинична

Две ноги … Правда, с протестом выступили птицы, поскольку им показалось, что и у них лишь две ноги. Дж. Оруэлл «Скотный двор» Значительная часть исследований, посвященных изучению способности животных к счету, была проведена на птицах. Первая детальная работа принадлежит

Из книги Наши знакомые незнакомцы автора Воловник Семен Вениаминович

Четыре ноги Он, казалось, был чем-то удивлен. Глаза его возвращались к моим рукам. Он вытянул свою руку и стал медленно считать свои пальцы. Герберт Уэллс «Остров доктора Моро». Первые опыты, выявляющие способность к счету у четвероногих, были проведены на макаках резусах

Из книги Семена разрушения. Тайная подоплека генетических манипуляций автора Энгдаль Уильям Фредерик

Умелые ноги Образ паука в нашем представлении тесно связан с паутиной (хотя тенета строит лишь треть всех пауков). Остановимся перед ловчей сетью паука-крестовика. Она растянулась над лесной тропинкой, слегка пружинит от дуновений ветра, сияет каплями росы… Красота, да и

Из книги Жизнеобеспечение экипажей летательных аппаратов после вынужденного приземления или приводнения (без иллюстраций) автора Волович Виталий Георгиевич

ЧАСТЬ IV. СЕМЕНА ГМО ВЫРЫВАЮТСЯ НА СВОБОДУ

Из книги Жизнеобеспечение экипажей летательных аппаратов после вынужденного приземления или приводнения [с иллюстрациями] автора Волович Виталий Георгиевич

Из книги Антропологический детектив. Боги, люди, обезьяны... [с иллюстрациями] автора Белов Александр Иванович

Из книги С утра до вечера автора Акимушкин Игорь Иванович

У КОГО НОГИ КАК РУКИ? Но спросим себя сами: существуют ли какие-либо научные основания считать предком животных антропоморфное существо? Такие основания нам дает теория биологической энтропии. Вот некоторые выдержки из неё.У человека опорой тела является стопа -

Из книги Тропическая природа автора Уоллес Альфред Рассел

Дай бог ноги! Органы чувств обеспечивают животным, так сказать, превентивную, то есть предупредительную, оборону. Это их разведчики. Но когда враг замечен (учуян или услышан), животные, подпустив его на известное расстояние, обычно удирают. Эту критическую дистанцию, ближе

Из книги Бегство от одиночества автора Панов Евгений Николаевич

Змеи К счастью, змеи не так многочисленны и назойливы, как ящерицы, а то едва ли можно было бы жить в тропиках. Сначала путешественник удивляется, не видя этих животных, но скоро приходит к убеждению, что их вокруг него множество. Человек, питающий к змеям обычное отвращение

Из книги Человек дарует имя автора Краснопевцев Валентин Павлович

Медузы - получившие свободу зооиды До сих пор мы не ставили вопроса, способны ли те или иные из множества прошедших перед нами «коллективных» образований самопроизвольно делиться на составные части и добровольно отпускать от себя отдельных зооидов или какие-либо их

Из книги Эволюция человека. Книга 1. Обезьяны, кости и гены автора Марков Александр Владимирович

Голова, ноги, хвост… Не только внешность в целом, форма тела животного, но и приметные особенности строения отдельных частей его или органов нашли отражение в кличках. Да и как не обратить самое пристальное внимание при первом же, пусть даже мимолетном знакомстве на такие

Из книги Мир животных автора Ситников Виталий Павлович

Гены, которые мы потеряли Эволюция гоминид сопровождалась не только приобретениями, но и потерями. Некоторые гены, которые у шимпанзе и других обезьян нормально работают, у человека выключились, превратились в молчащие псевдогены. В 1999 году Мэйнард Олсон из

Ученые из США создали алгоритм, способный предсказывать по геному, как в живом организме работают транскрипционные факторы - белки, управляющие синтезом других белков. Исследование опубликовано в PNAS.

Хотя последовательности ДНК многих организмов уже прочитаны, ученые еще не до конца понимают, как они работают. Одной из таких загадок долгое время оставались Hox-гены, которые управляют ростом организма и развитием его частей в правильных местах. Именно они «приказывают» голове у личинки дрозофилы расти спереди, определяют, где и в каком количестве появятся крылья и ноги. Есть эта группа генов и у млекопитающих.

Hox-гены кодируют не простые белки, а особенные, которые называются транскрипционными факторами. Эти белки работают «выключателями» для многих других генов, присоединяясь к специальным участкам ДНК, чтобы усилить или запретить считывание последовательности. Это и позволяет Hox-генам «дирижировать» развитием эмбриона. Однако ученые заметили странную особенность: хотя каждый Hox-ген отвечает за рост и развитие разных частей организма, все они сильно связываются с одними и теми же последовательностями ДНК.

В 2015 году генетики из Колумбийского университета обнаружили, что эти транскрипционные факторы связываются и со множеством других участков ДНК, но намного слабее. Ученые поняли, что эти слабые связывания – ключ к пониманию работы Hox-генов. Однако найти их все в геноме было непросто. Для этого генетики создали новый метод секвенирования (прочтения последовательностей ДНК), который назвали SELEX-seq. Для этого подхода нужно было много раз подряд секвенировать один и тот же участок, однако он не давал информации о важных участках со слабым связыванием. «Это было словно прогонять один и тот же абзац через Google-переводчик снова и снова, но в конце получать только 10% слов, переведенных аккуратно», – прокомментировал работу один из авторов технологии, Хиггинсовский профессор биохимии и молекулярной биофизики в Колумбийском университете Ричард Манн.

Исследователи создали новый алгоритм, позволяющий понять, почему ДНК-последовательности вели себя в этом эксперименте именно так. Алгоритм назвали No Read Left Behind, или NRLB (буквально «ни одно прочтение не забыто»). Этот алгоритм стал первым количественным методом, способным оценить силу связывания участков ДНК с транскрипционными факторами. Кроме того, он смог точно предсказать влияние определенных мутаций на уровень экспрессии генов в эмбрионах дрозофилы даже для слабо связывающихся участков.

Транскрипционных факторов в геноме около 10%, и их сила связывания с разными последовательностями может варьироваться в тысячи раз. Поэтому работа важна не только в контексте изучения Hox-генов, но и для нашего понимания того, как функционирует геном.

Понравился материал? в «Мои источники» Яндекс.Новостей и читайте нас чаще.

Hox-гены определяют схему тела животных. Очень важно, чтобы они экспрессировались в правильном количестве, в правильном месте и в правильный момент эмбрионального развития — иначе вся схема тела нарушится. Оказывается, для этих генов существует особый вид регуляции трансляции, позволяющий отделить один вид белков от всех прочих. На их мРНК есть IRES-подобные участки, которые могут запускать трансляцию. При этом кэп-зависимая трансляция для этих белков выключается.

Нох-гены - важный объект для изучения

Инициация трансляции бывает разная

Итак, генетический материал клетки закодирован в ДНК. С ДНК считывается определенный вид РНК, а с РНК - белок. Такой вид РНК называется матричной РНК, у он имеет определенное строение . Это линейная молекула, соответственно, у нее есть 2 конца, которые называются 5′- и 3′-концы. На 5′-конце есть особая структура - . Она необходима для начала синтеза белка на матрице РНК, так как привлекает фабрику белка - .

Так происходит у нас, но не у вирусов. Точнее, не у всех вирусов. У некоторых есть другие структуры в РНК, которые инициируют синтез белка - . Так вот оказывается, что в РНК млекопитающих иногда обнаруживают структуры, похожие на IRES вирусов. При этом кэп тоже присутствует. Получается РНК с двумя сигналами привлечения рибосомы. Это интересное явление часто имеет важный биологический смысл. Например, при стрессе кэп-зависимая инициация трансляции подавлена . Но некоторые белки должны синтезироваться и при стрессе. Вот тогда клетка и использует IRES. А как работает такая смешанная система в нормальных, не шоковых условиях - большая загадка. Клеточные IRES не похожи друг на друга , их роль в развитии организма не ясна. Найти ответ на этот вопрос попытались ученые, изучающие регуляцию Нох-генов .

У мРНК Hox-генов есть IRES вирусов?

Интересно, что в мРНК некоторых Нох-генов предполагают наличие IRES. Причем именно IRES привлекает рибосому и запускает синтез белков. Уже приведены первые экспериментальные доказательства в пользу этой гипотезы . Также ученые открыли еще один специальный регуляторный элемент - translation inhibitory element (TIE), который блокирует кэп-зависимый синтез белка . Появление блокирующего элемента объясняет, почему при наличии и кэп-структуры, и IRES работает только IRES.

Почему IRES лучше, чем кэп?

Важность того участка РНК, где находится предполагаемый IRES, в данном случае подтвердили экспериментально. Показали, что если подвергнуть мутации один из Нох-генов мышей, удалив IRES, то мышь будет развиваться ненормально (см. рисунок 1).

Рисунок 1. Патологии в развитии скелета мышей с делециями в 5′-нетранслируемой области в одном из Hox-генов - Ноха9. Ученые вывели линию мышей, у которых поврежден IRES в одном из Нох-генов. Такие мыши развиваются ненормально. У них нарушается строение скелета: например, не хватает ребер (на недостающие ребра указывают черные стрелочки). Также наблюдаются и другие патологии. Картинка из .

Предполагают, что для очень важных белков, которые закодированы в Нох-генах, IRES лучше, чем кэп. Это может быть связано с тем, что кэп-структура у всех мРНК одинаковая. А IRES разные. То есть к белкам, которые определяют строение тела, нужен индивидуальный подход. Даже начало синтеза является важным этапом регуляции и должно быть уникальным для каждого такого белка.

Словарь терминов:

  • IRES (Internal Ribosome Entry Site) - участок внутренней посадки рибосомы.
  • Hox-гены - семейство генов, которые кодируют транскрипционные факторы, регулирующие формирование органов и тканей в ходе развития организма.
  • Делеция - удаление фрагмента молекулы ДНК.
  • Кэп - 7-метилгуанозин - структура на 5′-конце матричных РНК.
  • Рибосома - комплекс, состоящий из РНК и белков и служащий для синтеза белка из аминокислот по заданной матрице на основе генетической информации, предоставляемой матричной РНК (мРНК).
  • Трансляция - синтез белка на матрице РНК.
  • Хромосома - структура, состоящая из ДНК и белков, находящаяся в ядре эукариотической клетки. Предназначена для хранения, реализации и передачи генетической информации.
  • Эукариоты - живые организмы, клетки которых содержат ядра.

Литература

  1. Alexander, T., Nolte, C. & Krumlauf, R. (2009). Hox genes and segmentation of the hindbrain and axial skeleton . Annu. Rev. Cell Dev. Biol. 25 , 431–456 ;
  2. Гены, от которых вырастают крылья. И ноги. И всё остальное ;
  3. Википедия : «

- … Википедия

- … Википедия

Гомеозисные гены детерминируют процессы роста и дифференцировки. Гомеозисные гены кодируют транскрипционные факторы, контролирующие программы формирования органов и тканей. Мутации в гомеозисных генах могут вызвать превращение одной части… … Википедия

- (англ. homeobox) последовательность ДНК, обнаруженная в генах, вовлеченных в регуляцию развития у животных, грибов и растений. Гены, которые содержат гомеобокс, образуют отдельное семейство. Наиболее изученными и наиболее… … Википедия

Кембрийским взрывом называют внезапное (в геологическом смысле) появление в раннекембрийских (ок. 540 млн лет) отложениях окаменелостей представителей многих подразделений животного царства, на фоне отсутствия их окаменелостей или окаменелостей… … Википедия

Млн. лет Период Эра … Википедия

- (англ. evolutionary developmental biology, evo devo) область биологии, которая, сравнивая онтогенез различных организмов, устанавливает родственные связи между ними и вскрывает развитие онтогенетических процессов в ходе эволюции. Она… … Википедия

Факторы транскрипции (транскрипционные факторы) белки, контролирующие перенос информации с молекулы ДНК в структуру мРНК (транскрипцию) путем связывания со специфичными участками ДНК. Транскрипционные факторы выполняют свою функцию… … Википедия

Комплекс белка HOXB7 с ДНК. Обозначения … Википедия

- (транскрипционные факторы) белки, контролирующие процесс синтеза мРНК на матрице ДНК (транскрипцию) путём связывания со специфичными участками ДНК. Транскрипционные факторы выполняют свою функцию либо самостоятельно, либо в комплексе… … Википедия

Книги

  • Эволюция онтогенеза , Н. Д. Озернюк , Эволюция онтогенеза рассматривается как основная проблема эволюционной биологии развития, поскольку эволюционные преобразования организмов обусловлены изменениями их онтогенеза. Интеграция… Категория:

Hox-гены - большое семейство генов, регулирующих развитие разных частей тела у многоклеточных животных. Уже довольно давно известно, что эти гены очень эволюционно консервативны: многие из них являются общими даже у таких далеких друг от друга организмов, как насекомые и млекопитающие. Однако эта консервативность не абсолютна. Проведенное германскими генетиками детальное исследование судьбы одной из групп Hox-генов показало, что новые гены в этой группе возникали в разных эволюционных ветвях несколько раз. Даже у таких относительно родственных животных, как хордовые и иглокожие, их набор - разный. А у древнего общего предка всех двусторонне-симметричных животных Hox-генов было существенно меньше, чем у большинства современных представителей.

Гены семейства Hox известны как регуляторы индивидуального развития животных, управляющие дифференцировкой частей их тела (см.: Программы работы Hox-генов у личинок и взрослых особей кольчатого червя принципиально отличаются , «Элементы», 27.05.2013). У большинства животных этих генов несколько, и они имеют два важных свойства. Во-первых, мутации Hox-генов вызывают уродства особого типа, связанные с превращением одних частей тела в другие. У насекомых, например, это может быть превращение брюшных сегментов в грудные или усиков в лапки (рис. 1). Гены с таким эффектом принято называть гомеозисными (см. такжеHomeotic gene). Во-вторых, Hox-гены исключительно эволюционно консервативны. Еще лет 30 назад было показано, что, например, у насекомых (муха-дрозофила) и у позвоночных (мышь, человек) их нуклеотидные последовательности очень близки.

Насекомые и позвоночные - совсем не близкие родственники. Они находятся друг от друга на эволюционном древе настолько далеко, насколько это вообще возможно для двух двусторонне-симметричных животных (см.:Новые данные позволили уточнить родословную животного царства , «Элементы», 10.04.2008). То есть их общий предок был одновременно общим предком моллюсков, иглокожих, плоских, круглых и кольчатых червей и вообще всех без исключения членов огромной группы двусторонне-симметричных, или билатерий (Bilateria). Если у мыши и у мухи есть какой-то общий ген, то это означает, что он уже был у этого общего предка.

Между тем у мухи-дрозофилы есть восемь Hox-генов, и все они имеют точные, один к одному, соответствия у позвоночных (рис. 2). По крайней мере, такое мнение долго было распространено.

Еще одна особенность Hox-генов состоит в том, что области активности (экспрессии) этих генов обычно расположены вдоль тела животного в том же порядке, в каком физически расположены сами гены в хромосоме (рис. 2). Это называется принципом коллинеарности . Для удобства Hox-гены принято делить на группы: «переднюю», «центральную» и «заднюю». В соответствии с принципом коллинеарности, под этими названиями подразумевается одновременно расположение самих генов в хромосоме и расположение областей их экспрессии в теле.

Новая работа, сделанная в лаборатории прикладной биоинформатики биологического факультета Констанцского университета (Applied Bioinformatics Lab , Department of Biology, Universität Konstanz), посвящена эволюционной судьбе центральной группы Hox-генов. И у мухи-дрозофилы, и у позвоночных в эту группу входят по три гена; у дрозофилы они называются Antp , Ubx и abd-A , а у позвоночных - Hox6 , Hox7 и Hox8 (рис. 3). Если основываться на их взаимном расположении, тут можно ожидать соответствия «один к одному»: гену Antp будет соответствовать ген Hox6 , гену Ubx - ген Hox7 , гену abd-A - ген Hox8 . Но так ли это на самом деле?

Генетики из Констанца решили разобраться в отношениях центральных Hox-генов, сравнив их напрямую. Как известно, продуктом каждого гена является белок, а белок - это цепочка аминокислот, последовательность которой можно расшифровать и записать. Аминокислотных последовательностей Hox-белков сейчас известно достаточно много. С помощью специальных программ немецкие генетики попарно сравнили друг с другом просто абсолютно все доступные последовательности белков - продуктов центральных Hox-генов, «не глядя» ни на номер гена, ни на то, от какого он животного. Серия таких объективных сравнений должна была надежно показать, какие гены имеют общее происхождение, а какие нет.

Оказалось, что из трех центральных Hox-генов общим у насекомых и у позвоночных на самом деле является только один. Это ген, который у насекомых называется Antp , а у позвоночных - Hox7 . Только этот ген, вероятно, и был у их общего предка. Другие центральные Hox-гены насекомых и позвоночных не имеют между собой ничего общего; они возникли в этих группах по-разному, в результате независимых генных дупликаций (удвоений). Например, гены Hox6 и Hox8 есть только у позвоночных: ни с какими генами других животных они не сходны.

Интересной оказалась судьба имеющегося у дрозофилы гена abd-A . Он (или его близкий «родственник») обнаружен не только у насекомых и даже не только у членистоногих, но и еще у нескольких типов животных, включая моллюсков, кольчатых и плоских червей. Видимо, этот ген является общим для огромной группы первичноротых (Protostomia). В эту группу входят членистоногие, моллюски и почти все черви. А вот позвоночные - не входят, и у них этот ген отсутствует.

Два необычных центральных Hox-гена обнаружены у животных, относящихся к типам иглокожих и полухордовых . Эти два типа считаются близкородственными, и действительно, уникальные Hox-гены - очевидно, эволюционно новоприобретенные - у них очень похожи. А вот у хордовых (к которым относятся, в частности, позвоночные) этих генов нет. Полухордовые, иглокожие и хордовые вместе входят в группу вторичноротых (Deuterostomia). Полученные результаты, видимо, означают, что не только у общего предка двусторонне-симметричных животных, но и у общего предка вторичноротых центральный Hox-ген был всего один.

Правда, общий предок вторичноротых жил тоже очень давно - 500 с лишним миллионов лет назад. Так что высокую консервативность Hox-генов эти результаты, в общем, подтверждают. Но мы теперь наглядно видим, что она не абсолютна. У гипотетического «проточервя», являвшегося предком всех двусторонне-симметричных животных, набор Hox-генов был не таким, как у мыши или у мухи (хотя на волне первых открытий и можно было так подумать). Он был все-таки заметно проще. А его усложнение шло постепенно, в разных группах по-разному, через события, многие из которых нам теперь известны.

Работа генетиков из Констанца показывает, что детальное описание эволюционной судьбы отдельных генов может быть очень сюжетным, - не хуже, чем, например, анализ биографий исторических персонажей. В ближайшие годы, видимо, будет появляться всё больше и больше таких исследований, основанных на обширных базах данных и на применении самого современного программного обеспечения. Эволюционная генетика на наших глазах выходит на новый виток своего развития.

Источники: Stefanie D. Hueber, Jens Rauch, Michael A. Djordjevic, Helen Gunter, Georg F. Weiller, Tancred Frickey. Analysis of central Hox protein types across bilaterian clades: On the diversification of central Hox proteins from an Antennapedia/Hox7-like protein // Developmental biology (2013, препринт).

 


Читайте:



Известные события произошедшие 12 сентября

Известные события произошедшие 12 сентября

12 сентября 490 год до н. э. года греческий воин Фидиппид пробежал от города Марафон до Афин , принёс весть о победе греков над персами: "Ликуйте!...

Правила вычисления производных

Правила вычисления производных

Решать физические задачи или примеры по математике совершенно невозможно без знаний о производной и методах ее вычисления. Производная - одно из...

Иван III – Государь всея Руси

Иван III – Государь всея Руси

На протяжении сорока трех лет Москвой правил великий князь Иван Васильевич или Иван III (1462–1505 гг.).Основные заслуги Ивана...

Первые металлургические мануфактуры тульского края Где появились первые металлургические заводы

Первые металлургические мануфактуры тульского края Где появились первые металлургические заводы

Кто сделал Урал железным хребтом Российской империи. История капитализма в России, который начал бурно развиваться при Петре Великом, прервалась...

feed-image RSS