Реклама

Главная - Бах Ричард
«Полное и неполное сцепление генов. Генетические карты хромосом». III.9 Сцепление генов и кроссинговер с примерами решения задач на полное и неполное сцепление генов Наследование признаков при неполном сцеплении генов

Гены, локализованные в одной хромосоме, образуют групп; сцепления и наследуются, как правило, вместе.

Число групп сцепления у диплоидных организмов равно гаплоидному набору хромосом. У женщин - 23 группы сцепления, у мужчин - 24.

Сцепление генов, расположенных в одной хромосоме, может быть полным и неполным. Полное сцепление генов, т. е. совмест­ное наследование, возможно при отсутствии процесса кроссинговера. Это характерно для генов половых хромосом, гетерогаметных по половым хромосомам организмов (ХУ, ХО), а также л для генов, расположенных рядом с центромерой хромосомы, где кроссинговер практически никогда не происходит.

В большинстве случаев гены, локализованные в одной хромо­соме, сцеплены не полностью, и в профазе I мейоза происходит обмен идентичными участками между гомологичными хромо­сомами. В результате кроссинговера аллельные гены, бывшие в составе групп сцепления у родительских особей, разделяются и формируют новые сочетания, попадающие в гаметы. Происхо­дит рекомбинация генов.

Гаметы и зиготы, содержащие рекомбинации сцепленных ге­нов, называют кроссоверными. Зная число кроссоверных гамет и общее количество гамет данной особи, можно вычислить часто­ту кроссинговера в процентах по формуле: отношение числа кроссоверных гамет (особей) к общему числу гамет (особей) умножить на 100%.

По проценту кроссинговера между двумя генами можно опре­делить расстояние между ними. За единицу расстояния между ге­нами - морганиду - условно принят 1% кроссинговера.

Частота кроссинговера говорит и о силе сцепления между ге­нами. Сила сцепления между двумя генами равна разности между 100% и процентом кроссинговера между этими генами.

Генетическая карта хромосомы - это схема взаимного расположения генов, находящихся в одной группе сцепления. Определение групп сцепления и расстояний между генами не является Мининым этапом построения генетической карты хромосомы, щи кильку необходимо установить также соответствие изучаемой группы сцепления определенной хромосоме. Определение группы сцепления осуществляется гибридологическим методом, т.е. путем изучения результатов скрещивания, а исследование хромосом - цитологическим методом с проведением микроско­пического исследования препаратов. Для определения соответствия данной группы сцепления конкретной хромосоме при­меняют хромосомы с измененной структурой. Выполняют стандартный анализ дигибридного скрещивания, в котором один исследуемый признак кодируется геном, локализованным на хромосоме с измененной структурой, а второй - геном, локализованным на любой другой хромосоме. В случае если наблюдается сцепленное наследование этих двух признаков, можно говорить о связи данной хромосомы с определенной группой сцепления.

Анализ генетических и цитологических карт позволил сформулировать основные положения хромосомной теории наследствен­ности.

1. Каждый ген имеет определенное постоянное место (локус)

и хромосоме.

2. Гены в хромосомах располагаются в определенной линей­ной последовательности.

3. Частота кроссинговера между генами прямо пропорциональна расстоянию между ними и обратно пропорциональна силе сцепления.

Блок информации.

Сцепление генов.

В начале 20-го века (1902-1907гг.) американским учёным У.Сеттоном и немецким эмбриологом Т.Бовери был обнаружен параллелизм в наследовании признаков и поведении хромосом клеточного ядра в процессе гаметогенеза и при оплодотворении. Это подтвердило локализацию наследственной информации в хромосомах. Установлено, что число генов значительно превышает число хромосом. Так у человека - 46 хромосом, а генов от 70 000 до 100 000. Следовательно, в каждой хромосоме локализовано большое количество генов. Гены одной хромосомы наследуются совместно (сцеплено). Экспериментальное исследование этого явления проведено американским генетиком Т.Морганом и его сотрудниками: А.Стертевантом, А.Бриджесом и Г.Мёллером в 1910-1916гг. Эти исследования подтвердили хромосомную локализацию генов и легли в основу хромосомной теории наследственности.

Основные положения хромосомной теории Наследственности.

1. Каждый ген занимает в хромосоме определённое место - локус.

2. Гены в хромосоме расположены линейно в определенной последовательности.

3. Различные хромосомы содержат неодинаковое число генов. Набор генов каждой негомологичной хромосомы уникален.

4. Гены одной хромосомы образуют " группу сцепления и наследуются вместе, т.е. сцеплено.

5. Число групп сцепления равно числу хромосом в гаплоидном наборе, (у дрозофилы их четыре, у кукурузы - 10, у мыши - 20, у человека -23).

6. Между гомологичными хромосомами может происходить обмен аллельными генами, т.е кроссинговер.

7. Частота кроссинговера прямо пропорциональна расстоянию между генами в группе сцепления.

8. За единицу расстояния между генами в группе сцепления принята особая единица - морганида (М). 1М=1% кроссинговера.

Различают полное и неполное сцепление генов.

Полное сцепление.

В экспериментах на дрозофиле было установлено, что развитие

признаков, которые наследуются сцеплено контролируется генами одной

хромосомы. Гены окраски тела (b - серой и B - черной) и длины крыльев

(v - нормальные и V - короткие, рудиментарные крылья) локализованы в одной паре гомологичных хромосом.

Скрещивание серых мух с нормальными крыльями и серых мух с рудиментарными крыльями дает в первом поколении серых гибридов с нормальными

При проведении анализирующего скрещивания, из р, были выбраны самцы, т. к. известно, что у самцов дрозофил ахиазматический сперматогенез (т. е. кроссинговер не происходит и полнота сцепления генов ничем не нарушается).В результате такого скрещивания на свет появляются особи двух фенотипов, аналогичные исходным родительским формам, причем в равных количествах: расщепление по фенотипу 1:1.

Рассматриваемые совместно результаты обоих скрещивании убеждают в том что развитие анализируемых признаков контролируется Разными генами, и сцепленное наследование объясняется локализацией генов в одной хромосоме. Полнота сцепления в данном случае ничем не нарушается. Такое сцепление генов является полным.

Для изучения неполного сцепления из Р, были выбраны самки (генотип В| |b) у С амок во время гаметогенеза происходит кроссинговер. Поэтому дигетерозиготная особь образует дополнительные, т.е. кроссоверные сорта гамет. Вероятность их образования обусловлена вероятностью кроссинговера, т.е. зависит от расстояния между генами в группе сцепления.

Не рекомбинантные особи; у Рекомбинантные особи; при

них наблюдаются такие же образовании их генотипов

сочетания, что и у исходных участвовали кроссоверные

родительских форм гаметы.

В данном примере расщепление по фенотипу в потомстве получено следующее: серых мух с длинными крыльями - 41,5%; черных с короткими крыльями - 41,5%; серых короткокрылых - 8,5%; черных длиннокрылых - 8,5 %. Таким образом, вероятность появления в потомстве рекомбинантных особей составляет 17%. Следовательно, расстояние между генами В и V в группе сцепления равно 17 морганиидам.

Преобладание в потомстве серых длиннокрылых и черных короткокрылых мух, указывает на то, что гены В и V; Ь и V действительно сцеплены. С другой стороны, появление рекомбинантных особей говорит о том, что в определенном числе случаев происходит разрыв сцепления между генами В и V и генами в и V. Это результат кроссинговера.

Примером полного сцепления генов у человека может служить наследование резус-фактора. Оно обусловлено тремя парами С, Д, К, тесно сцепленных между собой, поэтому наследование резус - принадлежности происходит по типу моногибридного скрещивания. Другим примером тесного сцепления генов у человека является наследование катаракты и полидактилии. Гены гемофилии и дальтонизма локализованы в Х - хромосоме на расстоянии 9,8 морганид (М), т.е. подвергаются кроссинговеру, поэтому наследуются как неполностью сцепленные. Аутососмные гены резус-фактора и формы эритроцитов, расположенные друг от друга на расстоянии 3 М и так же является примером неполного сцепления.

В 1909 Ф. Янссенс при изучении мейоза у земноводных оонаружил хиазмы (перекресты) хромосом, которые являются цитологическим свидетельством кроссинговера. С этого времени было предпринято множество попыток объяснить механизм этого явления. Существует несколько теорий кроссинговера. Наиболее распространенными являются две гипотезы.

Задача № 4. Высокое растение душистого горошка с зелеными морщинистыми семенами скрещено с растением, имеющим карликовый рост и зеленые круглые семена. В потомстве получено расщепление: 3/4 высоких растений с зелеными круглыми семенами и 1/4 – высоких с желтыми круглыми семенами. Определите генотипы исходных растений и гибридов F 1 .

Дано :

А – высокий рост
а – карликовость
В – зеленые семена
b – желтые семена
С – круглые семена
с – морщинистые семена

Генотипы P и F 1 – ?

Решение

Исходя из характера расщепления признаков у гибридов делаем выводы о характере генов и кодируемых ими признаках. По паре генов, определяющих высоту растений, высокое растение было гомозиготным, так как среди гибридов по этому признаку отсутствует расщепление. По паре генов, определяющих окраску семени, оба растения были гетерозиготными, так как среди гибридов по этому признаку имеет место расщепление 3: 1. Родительское растение с круглыми семенами было доминантной гомозиготой, так как у всех гибридов семена оказались круглыми.

Ответ

III. Домашнее задание

Решить генетическую задачу.

У кур оперенные ноги (А ) доминируют над голыми (а ), розовидный гребень (В ) – над простым (b ), белое оперение (С ) – над окрашенным (с ). Курица с оперенными ногами, розовидным гребнем и белым оперением скрещена с таким же петухом. Среди потомства оказался цыпленок с голыми ногами, простым гребнем и окрашенными перьями. Определите генотипы родителей.

Урок № 12–13. Сцепленное наследование генов. Полное и неполное сцепление. Генетические карты

Оборудование : таблицы по общей биологии, иллюстрирующие сцепленное наследование генов и признаков.

Ход урока

I. Проверка знаний

Проверка решения задачи дома.

Дано :

А – оперенные ноги
а – голые ноги
В – розовидный гребень
b – простой гребень
С – белое оперение
с – окрашенное оперение

Генотипы Р –?

Решение

При скрещивании двух родительских особей, каждая из которых являлась носителем трех доминантных признаков, среди гибридов появляется носитель трех рецессивных признаков. Это указывает на тригетерозиготность каждого из родителей.

(31 опер., роз., белых: 9 гол., роз., белых: 3 гол., пр., белых: 5 опер., пр., белых: 9 опер., роз., окрашенных: 3 опер., пр., окрашенных: 3 гол., роз., окрашенных: 1 гол., пр., окрашенный.)

Ответ :

Самостоятельная работа

Каждый учащийся получает карточку с текстом генетической задачи и решает ее в тетради.

Задача № 1. Растения томата сорта Золотая красавица имеют желтые плоды и высокий рост, сорт Карлик – низкорослый с красными плодами. Как, используя эти сорта, можно получить гомозиготный карликовый сорт с желтыми плодами?

Задача № 2. Плоды томатов бывают красные и желтые, гладкие и пушистые. Ген красного цвета доминантный, ген пушистости рецессивный. Обе пары находятся в разных хромосомах. Какое потомство можно ожидать от скрещивания гетерозиготных томатов с особью гомозиготной по обоим рецессивным генам?

Задача № 3. Плоды томатов бывают красные и желтые, гладкие и пушистые. Ген красного цвета доминантный, ген пушистости рецессивный. Обе пары находятся в разных хромосомах. Из собранного в колхозе урожая помидоров оказалось 36 т гладких красных и 12 т красных пушистых. Сколько в колхозном урожае будет желтых пушистых помидоров, если исходный материал был гетерозиготным по обоим признакам?

Задача № 4. У крупного рогатого скота ген комолости доминирует над геном рогатости, а ген черного цвета – над геном красного. Обе пары генов не сцеплены, то есть находятся в разных парах хромосом. В племсовхозе в течение ряда лет скрещивались черные комолые коровы с черным комолым быком. Было получено 896 голов молодняка, из них 535 черных комолых телят и 161 – красный комолый. Сколько было рогатых телят и какая часть из них красного цвета?

Задача № 5. У крупного рогатого скота ген комолости доминирует над геном рогатости, а ген черного цвета – над геном красного. Обе пары генов не сцеплены, то есть находятся в разных парах хромосом. В хозяйстве от 1000 рогатых красных коров получено 984 теленка. Из них красных – 472, комолых – 483, рогатых – 501. Определите генотипы родителей и процент черных телят.

Задача № 6. У человека ген карих глаз доминирует над геном голубых глаз, а умение владеть преимущественно правой рукой – над леворукостью. Обе пары генов расположены в разных хромосомах. Какими могут быть дети, если отец левша, но гетерозиготен по цвету глаз, а мать голубоглазая, но гетерозиготна в отношении умения владеть руками?

Задача № 7. У человека ген карих глаз доминирует над геном голубых глаз, а умение владеть преимущественно правой рукой – над леворукостью. Обе пары генов расположены в разных хромосомах. Голубоглазый правша женился на кареглазой правше. У них родились двое детей: кареглазый левша и голубоглазый правша. Определите вероятность рождения в этой семье голубоглазых детей, владеющих преимущественно левой рукой.

Задача № 8. От скрещивания растений флокса с белыми воронковидными цветками с растением, имеющим кремовые блюдцеобразные цветки, получили 96 растений с белыми блюдцеобразными цветками. Определите генотипы исходных растений, если известно, что каждый из признаков наследуется по моногенному типу и признаки наследуются независимо. Какие признаки доминантны?

Задача № 9. От скрещивания двух белоцветковых растений флокса с блюдцеобразными цветками в F 1 было получено: 49 растений с белыми блюдцеобразными цветками, 24 – с белыми воронковидными, 17 – с кремовыми блюдцеобразными и 5 – с кремовыми воронковидными цветками. Можно ли на основе результатов данного скрещивания определить, как наследуются эти признаки? Определите генотипы исходных растений. Какое расщепление должно произойти, если скрестить исходные растения с растением с кремовыми воронковидными цветками из F 1 ?

Задача № 10. При самоопылении двух растений томатов с красными двугнездными плодами одно из них дало только растения с красными двугнездными плодами, а от второго было получено 24 растения с красными двугнездными плодами и 10 растений с красными многогнездными плодами. Можно ли определить генотипы исходных растений? Какие скрещивания необходимо провести для проверки вашего предположения?

II. Изучение нового материала

Сцепленное наследование генов

Г.Мендель проследил наследование семи пар признаков у гороха. Многие исследователи, повторяя опыты Менделя, подтвердили открытые им законы. Было признано, что эти законы носят всеобщий характер. Однако в 1906 г. английские генетики В.Бэтсон и Р.Пеннет, проводя скрещивание растений душистого горошка и анализируя наследование формы пыльцы и окраски цветков, обнаружили, что эти признаки не дают независимого распределения в потомстве. Потомки всегда повторяли признаки родительских форм. Постепенно факты исключений из третьего закона Менделя накапливались. Стало ясно, что не для всех генов характерно независимое распределение в потомстве и свободное комбинирование.

Любой организм обладает многообразием морфологических, физиологических, биохимических и прочих признаков и свойств, причем каждый признак или свойство контролируется одним или несколькими генами, локализованными в хромосомах.

Однако если число генов организма огромно и может исчисляться десятками тысяч, то число хромосом сравнительно невелико и, как правило, измеряется несколькими десятками. Поэтому в каждой паре хромосом локализованы сотни и тысячи аллельных генов, образующих группы сцепления.

Установлено полное соответствие между числом групп сцепления и числом пар хромосом. Например, у кукурузы набор хромосом 2n = 20 и 10 групп сцепления, а у дрозофилы 2n = 8 и 4 группы сцепления, то есть число групп сцепления равно гаплоидному набору хромосом.

Закон Томаса Моргана

Гены, локализованные в одной хромосоме, передаются совместно, и способ их наследования отличается от наследования генов, локализованных в разных парах гомологичных хромосом.

Так, например, при независимом распределении хромосом дигибрид АаВb образует четыре типа гамет (АВ , аВ , Аb , аb ), а при условии полного сцепления такой же дигибрид даст только два типа гамет (АВ и аb ), так как эти гены расположены в одной хромосоме.

Разработка проблемы сцепленного наследования генов принадлежит школе Т.Моргана (1866–1945). Если Мендель проводил свои опыты на горохе, то для Моргана основным объектом стала плодовая мушка дрозофила. Мушка каждые две недели при температуре 25 °С дает многочисленное потомство. Самец и самка хорошо различимы – у самца брюшко меньше и темнее. Кроме того, они имеют различия по многочисленным признакам и могут размножаться в пробирках на дешевой питательной среде.

Изучая закономерности наследования генов, локализанных в одной и той же хромосоме , Морган пришел к выводу, что они наследуются сцепленно . Это и есть закон Т.Моргана.

Полное и неполное сцепление

Для определения типа наследования двух пар генов (сцепленное или независимое) необходимо провести анализирующее скрещивание и по его результатам сделать вывод о характере наследования генов. Рассмотрим три возможных варианта результатов анализирующего скрещивания.

1) Независимое наследование .

Если в результате анализирующего скрещивания среди гибридов образуется четыре класса фенотипов, значит, гены наследуются независимо.

2) Полное сцепление генов .

При полном сцеплении генов А и В по результатам анализирующего скрещивания обнаруживают-
ся два фенотипических класса гибридов, полностью копирующих родителей.

3) Неполное сцепление генов .

В случае неполного сцепления генов А и В при анализирующем скрещивании появляются четыре фенотипа, два из которых имеют новое сочетание генов: Аb аb ; аВ аb . Появление подобных форм свидетельствует о том, что дигибрид с гаметами АВ │ и аb │ образует кроссоверные гаметы Аb │ и аВ │. Появление таких гамет возможно только в результате обмена участками гомологичных хромосом, то есть в процессе кроссинговера. Количество кроссоверных гамет значительно меньшее, чем некроссоверных.

Частота перекреста пропорциональна расстоянию между генами. Чем ближе расположены гены в хромосоме, тем теснее сцепление между ними и тем реже они разделяются при перекресте. И наоборот, чем дальше гены отстоят друг от друга, тем слабее сцепление между ними и чаще перекрест. Следовательно, о расстоянии между генами в хромосомах можно судить по частоте перекреста.

Генетические карты

Под генетическим картированием обычно понимают определение положения какого-либо гена по отношению к другим генам.

Рассмотрим порядок составления генетических карт.

1. Установление группы сцепления (то есть определение хромосомы, в которой локализован данный ген). Для этого необходимо иметь хотя бы по одному гену-маркеру в каждой группе сцепления.

2. Нахождение места локализации исследуемого гена в хромосоме. Для этого проводится скрещивание мутантной формы с нормальной и учитывается результат кроссинговера.

3. Определение расстояния между сцепленными генами, что позволяет составлять генетические карты хромосом, на которых указаны порядок расположения генов в хромосомах и относительные расстояния их друг от друга. Чем частота кроссинговера выше, тем на большем расстоянии друг от друга располагаются гены. Если установлено, что между сцепленными генами А и В частота кроссинговера 10%, а между генами В и С – 20%, то очевидно, что расстояние ВС в 2 раза больше, чем АВ . Расстояние между генами выражается в единицах, соответствующих 1% кроссинговера. Эти единицы называют морганидами.

Таким образом, на основе данных о частоте кроссинговера составляются генетические карты.

III. Закрепление знаний

Решение генетической задачи

Самку дрозофилы, гетерозиготную по рецессивным генам темной окраски тела и миниатюрных крыльев, скрестили с самцом, имевшим темное тело и миниатюрные крылья. От этого скрещивания было получено:

– 244 мухи с темным телом и миниатюрными крыльями;
– 20 мух с серой окраской тела и миниатюрными крыльями;
– 15 мух с темной окраской тела и нормальными крыльями;
– 216 мух с серой окраской тела и нормальными крыльями.

Исходя из приведенных данных определите, являются две эти пары генов сцепленными или нет. Как гены сцеплены?

Дано :

А – серое тело
а – темное тело
В – нормальные крылья
b – миниатюрные крылья

Характер наследования генов А и В – ?

Решение

Результаты расщепления среди гибридов (два фенотипических класса являются господствующими и повторяют фенотипически и генотипически родительские формы, а два других класса фенотипов представлены небольшим количеством особей) свидетельствуют о неполном сцепление генов А и В.

Ответ : гены А и В наследуются сцепленно; сцепление носит неполный характер.

IV. Домашнее задание

Изучить параграф учебника (сцепленное наследование генов, закон Т.Моргана, полное и неполное сцепление, генетические карты).

Решить генетическую задачу.

Определить частоту кроссинговера между генами, если при скрещивании серых длиннокрылых мух с черными короткокрылыми в F 1 все мухи были серыми длиннокрылыми, а в анализирующем скрещивании самок F 1 с черным короткокрылым самцом было получено:

– 722 мухи серые длиннокрылые;
– 139 мух серых короткокрылых;
– 161 муха черная длиннокрылая;
– 778 мух черных короткокрылых.

Урок № 14–15. Хромосомная теория наследственности. Нехромосомная (цитоплазматическая) наследственность

Оборудование : таблицы по общей биологии, иллюстрирующие сцепленное наследование генов и признаков; портреты ученых, которые внесли особый вклад в создание хромосомной теории наследственности.

Ход урока

I. Проверка знаний

1. Устная проверка знаний по вопросам:

Сцепленное наследование генов. Закон Т.Моргана.
Полное и неполное сцепление генов.
Генетические карты и порядок их составления.

2. Проверка решения задачи дома.

Дано :

А – серое тело
а – темное тело
В – длинные крылья
b – короткие крылья

Частота кроссинговера – ?

Решение

Составляем схемы первого и второго скрещиваний.

N (гибридов) = 722 + 778 + 161 + 139 = 1800 особей.

N (рекомбинантов) = 161 + 139 = 300 особей.

(300 × 100) : 1800 = 16,6%

Ответ : 16,6%.

II. Решение задач в классе

Задача № 1. Если допустить, что гены А и В сцеплены и перекрест между ними составляет 10%, то какие гаметы и в каком количестве будут образовываться дигетерозиготой АВ аb ?

Решение

Перекрест между генами А и В составляет 10%, это значит, что кроссоверных гамет образуется в сумме 10% (по 5% каждого типа). На долю некроссоверных гамет остается 90% (по 45% каждого типа).

Ответ : АВ (45%); аb (45%); Аb (5%); аВ (5%).

Задача № 2. Гладкая форма семян кукурузы доминирует над морщинистой, окрашенные семена доминируют над неокрашенными. Оба признака сцеплены. При скрещивании кукурузы с гладкими окрашенными семенами с растением, имеющим морщинистые неокрашенные семена, получено потомство:

окрашенных гладких – 4152 особи;
окрашенных морщинистых – 149;
неокрашенных гладких – 152;
неокрашенных морщинистых – 4163.

Определите расстояние между генами.

Дано :

А – гладкие семена
а – морщинистые семена
В – окрашенные семена
b – неокрашенные семена

Расстояние АВ – ?

Решение

Cоставляем схему скрещивания.

2) Подсчитываем общее количество гибридов:

N (гибридов) = 4152 + 4163 + 152 + 149 = 8616 особей.

3) Подсчитываем количество особей-рекомбинантов:

N (рекомбинантов) = 152 + 149 = 301 особь.

4) Определяем частоту кроссинговера:

(301 × 100) : 8616 = 3,5%

5) Один процент кроссинговера равен 1 морганиде, поэтому расстояние между генами А и В равно 3,5 морганидам.

Ответ : 3,5 морганид.

III. Изучение нового материала

Хромосомная теория наследственности

Благодаря исследованиям А.Вейсмана, Т.Бовери, Т.Моргана и других выдающихся генетиков и цитологов к 40-м гг. XX в. была сформулирована хромосомная теория наследственности. Современная хромосомная теория наследственности включает следующие постулаты :

1) признаки организмов формируются под действием генов, расположенных в хромосомах;
2) хромосомы имеются в каждой клетке, и число их постоянно для каждого вида;
3) гаметы содержат гаплоидный набор хромосом;
4) в зиготе и соматических клетках – парный, диплоидный набор хромосом. Половина хромосом зиготы материнского происхождения, другая – отцовского;
5) хромосомы сохраняют структурную и генетическую индивидуальность в жизненном цикле организмов;
6) в хромосоме гены расположены линейно и в пределах одной хромосомы образуют группу сцепления. Число групп сцепления равно гаплоидному числу хромосом;
7) частота кроссинговера, происходящего в мейозе, пропорциональна расстоянию между генами.

Таким образом, хромосомная теория наследственности – выдающееся достижение биологической науки. Она стала результатом объединения знаний, полученных в двух биологических дисциплинах: генетике и цитологии.

Цитоплазматическая наследственность

Наряду с фактами, подтверждающими хромосомную теорию наследственности, в процессе формирования генетики как науки стали накапливаться факты о наследственности, не подчиняющиеся установленным закономерностям: наследование только по материнской линии, отклонения от менделевских числовых отношений и др.

Эти случаи можно было объяснить лишь локализацией генов, определяющих данный признак, в цитоплазме, то есть цитоплазма тоже играет определенную роль в формировании некоторых признаков. Это явление получило название цитоплазматической, или внехромосомной, наследственности. Например, хлоропласты высших растений при половом размножении передаются по материнской линии, мужские гаметы их не содержат, следовательно, зигота содержит хлоропласты, которые были в яйцеклетке. Хлоропласты содержат свою кольцевую ДНК, которая обеспечивает синтез некоторых белков и РНК, отвечающих за ряд признаков.

У ночной красавицы и львиного зева известны явления пестролистности, связанные с мутациями ДНК некоторых хлоропластов. Эти мутации могут привести к тому, что хлоропласты утрачивают зеленую окраску. Когда клетка делится, распределение хлоропластов по дочерним клеткам происходит случайно, в дочерних клетках могут оказаться окрашенные, бесцветные или те и другие хлоропласты. Если яйцеклетка содержала бесцветные хлоропласты, то из зиготы будет развиваться неокрашенное растение, израсходовав запас питательных веществ, оно погибает. Если в яйцеклетке только зеленые хлоропласты – разовьется нормальное зеленое растение. Если в яйцеклетку попали и зеленые и бесцветные хлоропласты, то растение будет пестролистным. Таким же образом наследуются признаки, связанные с мутациями, произошедшими в митохондриях.

IV. Домашнее задание

Изучить параграф учебника и записи, сделанные в классе (положения хромосомной теории наследственности, цитоплазматическая наследственность).

В 1906 году У. Бэтсон и Р. Пеннет, проводя скрещивание растений душистого горошка и анализируя наследование формы пыльцы и окраски цветков, обнаружили, что эти признаки не дают независимого распределения в потомстве, гибриды всегда повторяли признаки родительских форм. Стало ясно, что не для всех признаков характерно независимое распределение в потомстве и свободное комбинирование.

Каждый организм имеет огромное количество признаков, а число хромосом невелико. Следовательно, каждая хромосома несет не один ген, а целую группу генов, отвечающих за развитие разных признаков. Изучением наследования признаков, гены которых локализованы в одной хромосоме, занимался Т. Морган . Если Мендель проводил свои опыты на горохе, то для Моргана основным объектом стала плодовая мушка дрозофила.

Дрозофила каждые две недели при температуре 25 °С дает многочисленное потомство. Самец и самка внешне хорошо различимы — у самца брюшко меньше и темнее. Они имеют всего 8 хромосом в диплоидном наборе, достаточно легко размножаются в пробирках на недорогой питательной среде.

Скрещивая мушку дрозофилу с серым телом и нормальными крыльями с мушкой, имеющей темную окраску тела и зачаточные крылья, в первом поколении Морган получал гибриды, имеющие серое тело и нормальные крылья (ген, определяющий серую окраску брюшка, доминирует над темной окраской, а ген, обусловливающий развитие нормальных крыльев, — над геном недоразвитых). При проведении анализирующего скрещивания самки F 1 с самцом, имевшим рецессивные признаки, теоретически ожидалось получить потомство с комбинациями этих признаков в соотношении 1:1:1:1. Однако в потомстве явно преобладали особи с признаками родительских форм (41,5% — серые длиннокрылые и 41,5% — черные с зачаточными крыльями), и лишь незначительная часть мушек имела иное, чем у родителей, сочетание признаков (8,5% — черные длиннокрылые и 8,5% — серые с зачаточными крыльями). Такие результаты могли быть получены только в том случае, если гены, отвечающие за окраску тела и форму крыльев, находятся в одной хромосоме.

1 — некроссоверные гаметы; 2 — кроссоверные гаметы.

Если гены окраски тела и формы крыльев локализованы в одной хромосоме, то при данном скрещивании должны были получиться две группы особей, повторяющие признаки родительских форм, так как материнский организм должен образовывать гаметы только двух типов — АВ и аb , а отцовский — один тип — аb . Следовательно, в потомстве должны образовываться две группы особей, имеющих генотип ААВВ и ааbb . Однако в потомстве появляются особи (пусть и в незначительном количестве) с перекомбинированными признаками, то есть имеющие генотип Ааbb и ааВb . Для того, чтобы объяснить это, необходимо вспомнить механизм образования половых клеток — мейоз. В профазе первого мейотического деления гомологичные хромосомы конъюгируют, и в этот момент между ними может произойти обмен участками. В результате кроссинговера в некоторых клетках происходит обмен участками хромосом между генами А и В , появляются гаметы Аb и аВ , и, как следствие, в потомстве образуются четыре группы фенотипов, как при свободном комбинировании генов. Но, поскольку кроссинговер происходит при образовании небольшой части гамет, числовое соотношение фенотипов не соответствует соотношению 1:1:1:1.

Группа сцепления — гены, локализованные в одной хромосоме и наследующиеся совместно. Количество групп сцепления соответствует гаплоидному набору хромосом.

Сцепленное наследование — наследование признаков, гены которых локализованы в одной хромосоме. Сила сцепления между генами зависит от расстояния между ними: чем дальше гены располагаются друг от друга, тем выше частота кроссинговера и наоборот. Полное сцепление — разновидность сцепленного наследования, при которой гены анализируемых признаков располагаются так близко друг к другу, что кроссинговер между ними становится невозможным. Неполное сцепление — разновидность сцепленного наследования, при которой гены анализируемых признаков располагаются на некотором расстоянии друг от друга, что делает возможным кроссинговер между ними.

Независимое наследование — наследование признаков, гены которых локализованы в разных парах гомологичных хромосом.

Некроссоверные гаметы — гаметы, в процессе образования которых кроссинговер не произошел.

Нерекомбинанты — гибридные особи, у которых такое же сочетание признаков, как и у родителей.

Рекомбинанты — гибридные особи, имеющие иное сочетание признаков, чем у родителей.

Расстояние между генами измеряется в морганидах — условных единицах, соответствующих проценту кроссоверных гамет или проценту рекомбинантов. Например, расстояние между генами серой окраски тела и длинных крыльев (также черной окраски тела и зачаточных крыльев) у дрозофилы равно 17%, или 17 морганидам.

У дигетерозигот доминантные гены могут располагаться или в одной хромосоме (цис-фаза ), или в разных (транс-фаза ).

1 — Механизм цис-фазы (некроссоверные гаметы); 2 — механизм транс-фазы (некроссоверные гаметы).

Результатом исследований Т. Моргана стало создание им хромосомной теории наследственности :

  1. гены располагаются в хромосомах; различные хромосомы содержат неодинаковое число генов; набор генов каждой из негомологичных хромосом уникален;
  2. каждый ген имеет определенное место (локус) в хромосоме; в идентичных локусах гомологичных хромосом находятся аллельные гены;
  3. гены расположены в хромосомах в определенной линейной последовательности;
  4. гены, локализованные в одной хромосоме, наследуются совместно, образуя группу сцепления; число групп сцепления равно гаплоидному набору хромосом и постоянно для каждого вида организмов;
  5. сцепление генов может нарушаться в процессе кроссинговера, что приводит к образованию рекомбинантных хромосом; частота кроссинговера зависит от расстояния между генами: чем больше расстояние, тем больше величина кроссинговера;
  6. каждый вид имеет характерный только для него набор хромосом — кариотип.

    Перейти к лекции №17 «Основные понятия генетики. Законы Менделя»

32. Особенности наследования признаком при неполном и полном сцелении

СЦЕПЛЕННОЕ НАСЛЕДОВАНИЕ ПРИЗНАКОВ

Мы познакомились с дигибридным скрещиванием и уяснили, что независимое комбинирование признаков объясняется тем, что расщепление одной пары аллельных генов, определяющих соответствующие признаки, происходит независимо от другой пары. Однако это наблюдается только в том случае, когда гены разных пар находятся в разных парах хромосом и при образова­нии половых клеток гибрида в мейозе отцовские и материнские хромосомы независимо комбинируются. Но количество хромо­сом очень ограниченно по сравнению с количеством признаков, каждый из которых развивается под контролем определенного гена. Так, у дрозофилы известно около 7000 генов при четырех парах хромосом. Предполагается, что у человека не менее 50 тыс. генов при 23 парах хромосом, и т. д. Отсюда следует, что в каждой паре хромосом должны быть локализованы сотни алле­лей. Естественно; что между генами, которые находятся в одной хромосоме, наблюдается сцепление и при образовании половых клеток они должны передаваться вместе.

Сцепленное наследование открыли в 1906 г. английские гене­тики У. Бэтсон и Р. Пеннет при изучении наследования призна­ков у душистого горошка, но они не смогли вскрыть причины этого явления. Природу сцепленного наследования в 1910 г. вы­яснили ученые Т. Морган и его сотрудники К. Бриджес и А. Стертевант. В качестве объекта исследования они избрали плодовую муху дрозофилу, которая оказалась очень удобной для генетических опытов. В клетках тела дрозофилы находится 4 пары хромосом. Она отличается очень высокой плодовитостью - одна пара дает более ста потомков. У нее большая скорость развития - в течение 12-15 дней после оплодотворения из яйца развиваются личинка, куколка и взрослая особь, которая почти сразу же способна давать потомство. Можно исследовать в тече­ние года более двадцати поколений. Мухи серого цвета, с крас­ными глазами,. имеют маленькие размеры (около 3 мм), легко разводятся в биологических пробирках; для изучения их призна­ков можно пользоваться лупами. При просмотре сотен тысяч особей Морган обнаружил множество разных мутаций: встреча-лись мухи с черным и желтым телом, с белыми и другого цвета глазами, с измененной формой и положением крыльев и т. д. Иногда попадались особи, имеющие сразу несколько мутаций, например черное тело, зачаточные крылья, киноварные глаза.

Изучая наследование разных пар признаков при дигибридном и полигибридном скрещиваниях, Морган и его сотрудники обна­ружили большое число примеров сцепленного (совместного) их наследования. Все изученные признаки распределились на четы­ре группы сцепления в соответствии с числом и размерами хро­мосом у дрозофилы. На этом основании Морган сделал вывод о том, что гены, определяющие эти признаки, находятся в хромо­сомах. Гены, расположенные в одной хромосоме, представляют собой группу сцепления.

Сцепление генов - это совместное наследование генов, располо­женных в одной и той же хромосоме. Количество групп сцепления соответствует гаплоидному числу хромосом. Например, у дрозо­филы 4 группы сцепления, у человека 23, у крупного рогатого скота 30, у свиней 19 и т. д.

Мысль о расположении генов в хромосомах высказал Сеттон еще в 1902 г. Он обнаружил параллелизм в поведении хромосом в мейозе и наследовании признаков у одного из видов кузнечика. Дальнейшие исследования, проведенные Морганом, показали, что сцепление генов, расположенных в одной хромосоме, может быть полным или неполным.

Наиболее четко разница в поведении сцепленных и независи­мо наследующихся генов выявляется при проведении анализиру­ющего скрещивания. При независимом наследовании двух пар признаков у гибрида Fi (АаВЬ) с равной вероятностью образуется 4 сорта гамет: АВ, Ab , aB , ab . При скрещивании с полным рецессивом (aabb ) количество сортов гамет у гибрида обусловли­вает число типов потомков и одинаковую вероятность их появ­ления, так как гаметы рецессивной особи (ab ) не могут изменить проявления доминантных и рецессивных генов гамет гибрида. В результате соотношение фенотипов потомства будет равно 1:1:1:1. Если же обе пары аллельных генов расположены в одной паре хромосом, то при образовании половых клеток гены этих аллелей не смогут свободно комбинироваться. В этом случае наблюдается сцепленное наследование.

ПОЛНОЕ СЦЕПЛЕНИЕ

Т. Морган скрещивал черных длиннокрылых самок с серыми с зачаточными крыльями самцами. У дрозофилы серая окраска тела доминирует над черной, длиннокрылость - над зачаточны­ми крыльями. Обозначим ген серой окраски тела В, аллельный ему ген черной окраски тела Ь; ген длиннокрылое™ V , аллель­ный ему ген зачаточных крыльев v. Обе пары этих генов нахо-дятся в одной и той же второй паре хромосом. По обеим парам Признаков родительские формы были гомозиготны: самка по рецессивному признаку черного тела (bb ) и доминантному при­знаку длиннокрылое™ (VV ), самец по доминантному признаку серой окраски. (ВВ) и рецессивному признаку зачаточных кры­льев (w>. Гаметы родителей при редукционном делении получа­ют у материнской формы хромосому с генами b и V , у отцов­ской"-с генами В и v. Все потомство первого поколения (Fi) имело серое тело и длинные крылья (рис. 13) и было гетерози­готно по обеим парам признаков (bV / Bv ). Затем из Fi были отобраны самцы, которых скрестили с гомозиготными по обоим рецессивным генам самками, черными зачаточнокрылыми (bv / bv ), т. е. было проведено анализирующее скрещивание, в результате которого при независимом комбинировании призна­ков должны были бы получить потомство четырех фенотипов в равных соотношениях: серых длиннокрылых, серых с зачаточны­ми крыльями, черных длиннокрылых, черных с зачаточными крыльями, но были получены потомки только двух фенотипов, похожих на исходные родительские формы: черные длиннокры­лые и серые короткокрылые. В этом случае наблюдается полное сцепление признаков. Это связано с тем, что у гетерозиготного самца в одной и той же хромосоме из гомологичной пары распо­ложены и ген черной окраски, и ген длинных крыльев, в дру­гой - ген серой окраски и ген зачаточнокрылости.

При спермиогенезе в период мейоза гомологичные хромосо­мы расходятся в разные половые клетки. Образуется только два сорта гамет: один с хромосомой, которая несет гены Ъ и V , другой с хромосомой, в которой расположены гены В и v. При сочетании указанных гамет с гаметами особи с рецессивными признаками и образуется потомство только двух типов. При пол­ном сцеплении гены, расположенные в одной хромосоме, всегда пере­даются вместе. Полное сцепление пока установлено только у са>щов дрозофилы и самок тутового шелкопряда.

НЕПОЛНОЕ СЦЕПЛЕНИЕ

В следующем опыте, так же как и в предыдущем, Морган скрещивал черных длиннокрылых самок с серыми зачаточно-крылыми самцами. В первом поколении получил все потомство серое длиннокрылое. Затем снова произвел анализирующее скре­щивание, но из первого поколения отобрал не самца, а самку и скрестил ее с черным с зачаточными крыльями самцом (рис. 14). В этом случае появилось потомство не двух типов, как при полном сцеплении, а четырех: серое о-зачаточными крыльями, черное длиннокрылое, серое длиннокрылое и черное с зачаточ­ными крыльями, но не в равных соотношениях, как при незави­симом комбинировании признаков, а со значительным преобла­данием фенотипов, сходных с родительскими формами. 41,5 % мух было серых с зачаточными крыльями, как у одного исходно­го родителя, и 41,5 % особей черных длиннокрылых, как у дру­гого исходного родителя. Только 17 % потомков родилось с новым сочетанием признаков: 8,5 % черных с зачаточными кры­льями и 8,5 % серых длиннокрылых. Таким образом, 83 % по­томков имели сочетание признаков, как у исходных родитель­ских форм, но появились особи и с новым сочетанием призна­ков. Следовательно, сцепление является неполным. / Встал вопрос: почему появились особи с новой комбинацией родительских признаков? Для объяснения этого явления Морган использовал и развил теорию хиазмотипии бельгийского цитолога Янсенса. В 1909 г. Янсенс наблюдал, что при спермиогенезе у саламандры в профазе мейоза гомологичные хромосомы конъ-югируют, а затем, при начале расхождения, образуют фигуры в хромосомы обмениваются участками. Если сцепленные гены лежат в одной хромосоме и у гетерозигот при образовании гамет проис­ходит рекомбинация этих генов, значит, гомологичные хромосо­мы во время мейоза обменялись своими частями. Обмен гомоло­гичных хромосом своими частями называется перекрестом или крос-синговером (английское слово crossingover означает образование перекреста). Особей с новыми сочетаниями признаков, образо­вавшимися в результате кроссинговера, называют кроссоверами.

Вернемся к рисунку 14. У самки Fi, гетерозиготной по обеим парам признаков, в одной из гомологичных хромосом располо­жены гены Ъ и V , в другой - аллельные им гены В и v. В профазе редукционного деления, когда две гомологичные хромо­сомы соединились в один бивалент, каждая из хромосом удвоена и состоит из двух хроматид. Всего будет 4 хроматиды. Между двумя хроматидами гомологичных хромосом и происходит обмен их частями. В результате ген Ъ, расположенный в хроматиде одной гомологичной хромосомы, может соединиться с геном v, расположенным в хроматиде другой гомологичной хромосомы, и как результат одного события образуется вторая хроматида, где соединятся гены В и V . В дальнейшем хроматиды разойдутся и образуются кроссоверные гаметы с хромосомами с новым соче­танием генов (bv и BV ).

Две другие хроматиды из пары гомологичных хромосом не участвуют в перекресте и сохраняют в первоначальном сочетании материнские (bV ) и отцовские (Bv ) гены. Образование новых кроссоверных гамет обеспечило появление дрозофил -с новым сочетанием признаков: черных с зачаточными крыльями и серых длиннокрылых. Однако большая часть потомков будет сходна с исходными родителями (черные длиннокрылые и серые коротко-крылые). Морган приходит к выводу, что количество появления новых форм зависит от частоты перекреста, которая определяет­ся по следующей формуле:

Если, например, общее число потомков 900, а новых кроссо­верных форм 180, то частота перекреста будет составлять 20 %. Морган установил, что частота перекреста между определенной парой генов - относительно постоянная величина, но различная для разных пар генов. На основании этого был сделан вывод о том, что по частоте перекреста можно судить о расстояниях между генами. За единицу измерения перекреста принята его величина, равная 1 %. Иногда ее называют морганидой. Величина перекреста зависит от расстояния между изучаемыми генами. Чем больше отдалены гены друг от друга, тем чаще происходит перекрест; чем ближе они расположены, тем вероятность перекреста мень­ше. Установлено, что количество кроссоверных особей к общему числу потомков никогда не превышает 50 %, так как при очень больших расстояниях между генами чаще происходит двойной кроссинговер и часть кроссоверных особей остается неучтенной. Их можно учесть при изучении не двух пар сцепленных призна­ков, а трех или четырех. В этом случае, учитывая двойные и тройные перекресты, можно точнее судить о расстояниях и час­тоте перекреста между генами.

 


Читайте:



Что помешало спасти "титаник"

Что помешало спасти

Океан. Выпуск тринадцатый Баранов Юрий Александрович «Самсон», эскадренный миноносец. «Самсон», эскадренный миноносец. В октябрьские дни...

Литературно-музыкальная композиция «Есть такая профессия — Родину защищать

Литературно-музыкальная композиция «Есть такая профессия — Родину защищать

Валентина Меняйленко Проект по литературному чтению в 4 классе «Они защищали Родину» Муниципальное бюджетное образовательное учреждение...

Городской открытый августовский педагогический совет Тематика проведения педсоветов в году

Городской открытый августовский педагогический совет Тематика проведения педсоветов в году

Темы педсоветов на 2018-2019 учебный год в школах и ДОУ по ФГОС – с августа по июнь для администрации и учителей. В дошкольных образовательных...

Примеры стилей текста: калейдоскоп вариаций речи

Примеры стилей текста: калейдоскоп вариаций речи

Функциональные стили речи делятся на две группы: содержание и формальный параметр языка. В рассказе или поэме прослеживается художественный язык,...

feed-image RSS