Главная - Бах Ричард
Что наибольший общий делитель двух чисел. Нахождение нод трех и большего количества чисел. Нахождение НОД трех и большего количества чисел

Наибольшее натуральное число, на которое делятся без остатка числа a и b, называют наибольшим общим делителем этих чисел. Обозначают НОД(a, b).

Рассмотрим нахождения НОД на примере двух натуральных чисел 18 и 60:

  • 1 Разложим числа на простые множители:
    18 = 2 × 3 × 3
    60 = 2 × 2 × 3 × 5
  • 2 Вычеркнуть из разложения первого числа все множители которые не входят в разложения второго числа, получим 2 × 3 × 3 .
  • 3 Перемножаем оставшиеся простые множители после вычеркивания и получаем наибольший общий делитель чисел: НОД(18 , 60 )=2 × 3 = 6 .
  • 4 Заметим что не важно из первого или второго числа вычеркиваем множители, результат будет одинаков:
    18 = 2 × 3 × 3
    60 = 2 × 2 × 3 × 5
  • 324 , 111 и 432

    Разложим числа на простые множители:

    324 = 2 × 2 × 3 × 3 × 3 × 3

    111 = 3 × 37

    432 = 2 × 2 × 2 × 2 × 3 × 3 × 3

    Вычеркнуть из первого числа, множители которых нету во втором и третьем числе, получим:

    2 × 2 × 2 × 2 × 3 × 3 × 3 = 3

    В результате НОД(324 , 111 , 432 )=3

    Нахождение НОД с помощью алгоритма Евклида

    Второй способ нахождения наибольшего общего делителя с помощью алгоритма Евклида . Алгоритм Евклида является наиболее эффективным способом нахождения НОД , используя его нужно постоянно находить остаток от деления чисел и применять рекуррентную формулу .

    Рекуррентная формула для НОД, НОД(a, b)=НОД(b, a mod b) , где a mod b — остаток от деления a на b.

    Алгоритм Евклида
    Пример Найти наибольший общий делитель чисел 7920 и 594

    Найдем НОД(7920 , 594 ) с помощью алгоритма Евклида, вычислять остаток от деления будем с помощью калькулятора.

  • НОД(7920 , 594 )
  • НОД(594 , 7920 mod 594 ) = НОД(594 , 198 )
  • НОД(198 , 594 mod 198 ) = НОД(198 , 0 )
  • НОД(198 , 0 ) = 198
    • 7920 mod 594 = 7920 — 13 × 594 = 198
    • 594 mod 198 = 594 — 3 × 198 = 0
    • В результате получаем НОД(7920 , 594 ) = 198

      Наименьшее общее кратное

      Для того, чтобы находить общий знаменатель при сложении и вычитании дробей с разными знаменателями необходимо знать и уметь рассчитывать наименьшее общее кратное (НОК).

      Кратное числу « a » - это число, которое само делится на число « a » без остатка.

      Числа кратные 8 (то есть, эти числа разделятся на 8 без остатка): это числа 16, 24, 32 …

      Кратные 9: 18, 27, 36, 45 …

      Чисел, кратных данному числу a бесконечно много, в отличии от делителей этого же числа. Делителей - конечное количество.

      Общим кратным двух натуральных чисел называется число, которое делится на оба эти числа нацело .

      Наименьшим общим кратным (НОК) двух и более натуральных чисел называется наименьшее натуральное число, которое само делится нацело на каждое из этих чисел.

      Как найти НОК

      НОК можно найти и записать двумя способами.

      Первый способ нахождения НОК

      Данный способ обычно применяется для небольших чисел.

    1. Выписываем в строчку кратные для каждого из чисел, пока не найдётся кратное, одинаковое для обоих чисел.
    2. Кратное числа « a » обозначаем большой буквой «К».

    Пример. Найти НОК 6 и 8 .

    Второй способ нахождения НОК

    Этот способ удобно использовать, чтобы найти НОК для трёх и более чисел.

    Количество одинаковых множителей в разложениях чисел может быть разное.

  • Подчеркнуть в разложении меньшего числа (меньших чисел) множители, которые не вошли в разложение бóльшего числа (в нашем примере это 2) и добавить эти множители в разложение бóльшего числа.
    НОК (24, 60) = 2 · 2 · 3 · 5 · 2
  • Полученное произведение записать в ответ.
    Ответ: НОК (24, 60) = 120
  • Оформить нахождение наименьшего общего кратного (НОК) можно также следующим образом. Найдём НОК (12, 16, 24) .

    24 = 2 · 2 · 2 · 3

    Как видим из разложения чисел, все множители 12 вошли в разложение 24 (самого бóльшего из чисел), поэтому в НОК добавляем только одну 2 из разложения числа 16 .

    НОК (12, 16, 24) = 2 · 2 · 2 · 3 · 2 = 48

    Ответ: НОК (12, 16, 24) = 48

    Особые случаи нахождения НОК

  • Если одно из чисел делится нацело на другие, то наименьшее общее кратное этих чисел равно этому числу.
  • Например, НОК (60, 15) = 60
    Так как взаимно простые числа не имеют общих простых делителей, то их наименьшее общее кратное равно произведению этих чисел.

    На нашем сайте вы также можете с помощью специального калькулятора найти наименьшее общее кратное онлайн, чтобы проверить свои вычисления.

    Если натуральное число делится только на 1 и на само себя, то оно называется простым.

    Любое натуральное число всегда делится на 1 и на само себя.

    Число 2 - наименьшее простое число. Это единственное чётное простое число, остальные простые числа - нечётные.

    Простых чисел много, и первое среди них - число 2 . Однако нет последнего простого числа. В разделе «Для учёбы» вы можете скачать таблицу простых чисел до 997 .

    Но многие натуральные числа делятся нацело ещё и на другие натуральные числа.

    • число 12 делится на 1 , на 2 , на 3 , на 4 , на 6 , на 12 ;
    • число 36 делится на 1 , на 2 , на 3 , на 4 , на 6 , на 12 , на 18 , на 36 .
    • Числа, на которые число делится нацело (для 12 это 1, 2, 3, 4, 6 и 12) называются делителями числа.

      Делитель натурального числа a - это такое натуральное число, которое делит данное число « a » без остатка.

      Натуральное число, которое имеет более двух делителей называется составным.

      Обратите внимание, что числа 12 и 36 имеют общие делители. Это числа: 1, 2, 3, 4, 6, 12 . Наибольший из делителей этих чисел - 12 .

      Общий делитель двух данных чисел « a » и « b » - это число, на которое делятся без остатка оба данных числа « a » и « b ».

      Наибольший общий делитель (НОД) двух данных чисел « a » и « b » - это наибольшее число, на которое оба числа « a » и « b » делятся без остатка.

      Кратко наибольший общий делитель чисел « a » и « b » записывают так :

      Пример: НОД (12; 36) = 12 .

      Делители чисел в записи решения обозначают большой буквой «Д».

      Числа 7 и 9 имеют только один общий делитель - число 1 . Такие числа называют взаимно простыми числами .

      Взаимно простые числа - это натуральные числа, которые имеют только один общий делитель - число 1 . Их НОД равен 1 .

      Как найти наибольший общий делитель

      Чтобы найти НОД двух или более натуральных чисел нужно:

    • разложить делители чисел на простые множители;
    • Вычисления удобно записывать с помощью вертикальной черты. Слева от черты сначала записываем делимое, справа - делитель. Далее в левом столбце записываем значения частных.

      Поясним сразу на примере. Разложим на простые множители числа 28 и 64 .

      Подчёркиваем одинаковые простые множители в обоих числах.
      28 = 2 · 2 · 7

    64 = 2 · 2 · 2 · 2 · 2 · 2
    Находим произведение одинаковых простых множителей и записать ответ;
    НОД (28; 64) = 2 · 2 = 4

    Ответ: НОД (28; 64) = 4

    Оформить нахождение НОД можно двумя способами: в столбик (как делали выше) или «в строчку».

    Первый способ записи НОД

    Найти НОД 48 и 36 .

    НОД (48; 36) = 2 · 2 · 3 = 12

    Второй способ записи НОД

    Теперь запишем решение поиска НОД в строчку. Найти НОД 10 и 15 .

    На нашем информационном сайте вы также можете с помощью программы помощника найти наибольший общий делитель онлайн, чтобы проверить свои вычисления.

    Нахождение наименьшего общего кратного, способы, примеры нахождения НОК.

    Представленный ниже материал является логическим продолжением теории из статьи под заголовком НОК — наименьшее общее кратное, определение, примеры, связь между НОК и НОД. Здесь мы поговорим про нахождение наименьшего общего кратного (НОК) , и особое внимание уделим решению примеров. Сначала покажем, как вычисляется НОК двух чисел через НОД этих чисел. Дальше рассмотрим нахождение наименьшего общего кратного с помощью разложения чисел на простые множители. После этого остановимся на нахождении НОК трех и большего количества чисел, а также уделим внимание вычислению НОК отрицательных чисел.

    Навигация по странице.

    Вычисление наименьшего общего кратного (НОК) через НОД

    Один из способов нахождения наименьшего общего кратного основан на связи между НОК и НОД. Существующая связь между НОК и НОД позволяет вычислять наименьшее общее кратное двух целых положительных чисел через известный наибольший общий делитель. Соответствующая формула имеет вид НОК(a, b)=a·b:НОД(a, b) . Рассмотрим примеры нахождения НОК по приведенной формуле.

    Найдите наименьшее общее кратное двух чисел 126 и 70 .

    В этом примере a=126 , b=70 . Воспользуемся связью НОК с НОД, выражающуюся формулой НОК(a, b)=a·b:НОД(a, b) . То есть, сначала нам предстоит найти наибольший общий делитель чисел 70 и 126 , после чего мы сможем вычислить НОК этих чисел по записанной формуле.

    Найдем НОД(126, 70) , используя алгоритм Евклида: 126=70·1+56 , 70=56·1+14 , 56=14·4 , следовательно, НОД(126, 70)=14 .

    Теперь находим требуемое наименьшее общее кратное: НОК(126, 70)=126·70:НОД(126, 70)= 126·70:14=630 .

    Чему равно НОК(68, 34) ?

    Так как 68 делится нацело на 34 , то НОД(68, 34)=34 . Теперь вычисляем наименьшее общее кратное: НОК(68, 34)=68·34:НОД(68, 34)= 68·34:34=68 .

    Заметим, что предыдущий пример подходит под следующее правило нахождения НОК для целых положительные чисел a и b: если число a делится на b , то наименьшее общее кратное этих чисел равно a .

    Нахождение НОК с помощью разложения чисел на простые множители

    Другой способ нахождения наименьшего общего кратного базируется на разложении чисел на простые множители. Если составить произведение из всех простых множителей данных чисел, после чего из этого произведения исключить все общие простые множители, присутствующие в разложениях данных чисел, то полученное произведение будет равно наименьшему общему кратному данных чисел .

    Озвученное правило нахождения НОК следует из равенства НОК(a, b)=a·b:НОД(a, b) . Действительно, произведение чисел a и b равно произведению всех множителей, участвующих в разложениях чисел a и b . В свою очередь НОД(a, b) равен произведению всех простых множителей, одновременно присутствующих в разложениях чисел a и b (о чем написано в разделе нахождение НОД с помощью разложения чисел на простые множители).

    Приведем пример. Пусть мы знаем, что 75=3·5·5 и 210=2·3·5·7 . Составим произведение из всех множителей данных разложений: 2·3·3·5·5·5·7 . Теперь из этого произведения исключим все множители, присутствующие и в разложении числа 75 и в разложении числа 210 (такими множителями являются 3 и 5), тогда произведение примет вид 2·3·5·5·7 . Значение этого произведения равно наименьшему общему кратному чисел 75 и 210 , то есть, НОК(75, 210)= 2·3·5·5·7=1 050 .

    Разложив числа 441 и 700 на простые множители, найдите наименьшее общее кратное этих чисел.

    Разложим числа 441 и 700 на простые множители:

    Получаем 441=3·3·7·7 и 700=2·2·5·5·7 .

    Теперь составим произведение из всех множителей, участвующих в разложениях данных чисел: 2·2·3·3·5·5·7·7·7 . Исключим из этого произведения все множители, одновременно присутствующие в обоих разложениях (такой множитель только один – это число 7): 2·2·3·3·5·5·7·7 . Таким образом, НОК(441, 700)=2·2·3·3·5·5·7·7=44 100 .

    НОК(441, 700)= 44 100 .

    Правило нахождения НОК с использованием разложения чисел на простые множители можно сформулировать немного иначе. Если ко множителям из разложения числа a добавить недостающие множители из разложения числа b , то значение полученного произведения будет равно наименьшему общему кратному чисел a и b .

    Для примера возьмем все те же числа 75 и 210 , их разложения на простые множители таковы: 75=3·5·5 и 210=2·3·5·7 . Ко множителям 3 , 5 и 5 из разложения числа 75 добавляем недостающие множители 2 и 7 из разложения числа 210 , получаем произведение 2·3·5·5·7 , значение которого равно НОК(75, 210) .

    Найдите наименьшее общее кратное чисел 84 и 648 .

    Получаем сначала разложения чисел 84 и 648 на простые множители. Они имеют вид 84=2·2·3·7 и 648=2·2·2·3·3·3·3 . К множителям 2 , 2 , 3 и 7 из разложения числа 84 добавляем недостающие множители 2 , 3 , 3 и 3 из разложения числа 648 , получаем произведение 2·2·2·3·3·3·3·7 , которое равно 4 536 . Таким образом, искомое наименьшее общее кратное чисел 84 и 648 равно 4 536 .

    Нахождение НОК трех и большего количества чисел

    Наименьшее общее кратное трех и большего количества чисел может быть найдено через последовательное нахождение НОК двух чисел. Напомним соответствующую теорему, дающую способ нахождения НОК трех и большего количества чисел.

    Пусть даны целые положительные числа a 1 , a 2 , …, a k , наименьшее общее кратное m k этих чисел находится при последовательном вычислении m 2 =НОК(a 1 , a 2) , m 3 =НОК(m 2 , a 3) , …, m k =НОК(m k−1 , a k) .

    Рассмотрим применение этой теоремы на примере нахождения наименьшего общего кратного четырех чисел.

    Найдите НОК четырех чисел 140 , 9 , 54 и 250 .

    Сначала находим m 2 =НОК(a 1 , a 2)=НОК(140, 9) . Для этого по алгоритму Евклида определяем НОД(140, 9) , имеем 140=9·15+5 , 9=5·1+4 , 5=4·1+1 , 4=1·4 , следовательно, НОД(140, 9)=1 , откуда НОК(140, 9)=140·9:НОД(140, 9)= 140·9:1=1 260 . То есть, m 2 =1 260 .

    Теперь находим m 3 =НОК(m 2 , a 3)=НОК(1 260, 54) . Вычислим его через НОД(1 260, 54) , который также определим по алгоритму Евклида: 1 260=54·23+18 , 54=18·3 . Тогда НОД(1 260, 54)=18 , откуда НОК(1 260, 54)= 1 260·54:НОД(1 260, 54)= 1 260·54:18=3 780 . То есть, m 3 =3 780 .

    Осталось найти m 4 =НОК(m 3 , a 4)=НОК(3 780, 250) . Для этого находим НОД(3 780, 250) по алгоритму Евклида: 3 780=250·15+30 , 250=30·8+10 , 30=10·3 . Следовательно, НОД(3 780, 250)=10 , откуда НОК(3 780, 250)= 3 780·250:НОД(3 780, 250)= 3 780·250:10=94 500 . То есть, m 4 =94 500 .

    Таким образом, наименьшее общее кратное исходных четырех чисел равно 94 500 .

    НОК(140, 9, 54, 250)=94 500 .

    Во многих случаях наименьшее общее кратное трех и большего количества чисел удобно находить с использованием разложений данных чисел на простые множители. При этом следует придерживаться следующего правила. Наименьшее общее кратное нескольких чисел равно произведению, которое составляется так: ко всем множителям из разложения первого числа добавляются недостающие множители из разложения второго числа, к полученным множителям добавляются недостающие множители из разложения третьего числа и так далее .

    Рассмотрим пример нахождения наименьшего общего кратного с использованием разложения чисел на простые множители.

    Найдите наименьшее общее кратное пяти чисел 84 , 6 , 48 , 7 , 143 .

    Сначала получаем разложения данных чисел на простые множители: 84=2·2·3·7 , 6=2·3 , 48=2·2·2·2·3 , 7 (7 – простое число, оно совпадает со своим разложением на простые множители) и 143=11·13 .

    Для нахождения НОК данных чисел к множителям первого числа 84 (ими являются 2 , 2 , 3 и 7) нужно добавить недостающие множители из разложения второго числа 6 . Разложение числа 6 не содержит недостающих множителей, так как и 2 и 3 уже присутствуют в разложении первого числа 84 . Дальше к множителям 2 , 2 , 3 и 7 добавляем недостающие множители 2 и 2 из разложения третьего числа 48 , получаем набор множителей 2 , 2 , 2 , 2 , 3 и 7 . К этому набору на следующем шаге не придется добавлять множителей, так как 7 уже содержится в нем. Наконец, к множителям 2 , 2 , 2 , 2 , 3 и 7 добавляем недостающие множители 11 и 13 из разложения числа 143 . Получаем произведение 2·2·2·2·3·7·11·13 , которое равно 48 048 .

    Следовательно, НОК(84, 6, 48, 7, 143)=48 048 .

    НОК(84, 6, 48, 7, 143)=48 048 .

    Нахождение наименьшего общего кратного отрицательных чисел

    Иногда встречаются задания, в которых требуется найти наименьшее общее кратное чисел, среди которых одно, несколько или все числа являются отрицательными. В этих случаях все отрицательные числа нужно заменить противоположными им числами, после чего находить НОК положительных чисел. В этом и состоит способ нахождения НОК отрицательных чисел. Например, НОК(54, −34)=НОК(54, 34) , а НОК(−622, −46, −54, −888)= НОК(622, 46, 54, 888) .

    Мы можем так поступать, потому что множество кратных числа a совпадает со множеством кратных числа −a (a и −a – противоположные числа). Действительно, пусть b – какое-то кратное числа a , тогда b делится на a , и понятие делимости утверждает существование такого целого числа q , что b=a·q . Но будет справедливо и равенство b=(−a)·(−q) , которое в силу того же понятия делимости означает, что b делится на −a , то есть, b есть кратное числа −a . Справедливо и обратное утверждение: если b – какое-то кратное числа −a , то b является кратным и числа a .

    Найдите наименьшее общее кратное отрицательных чисел −145 и −45 .

    Заменим отрицательные числа −145 и −45 на противоположные им числа 145 и 45 . Имеем НОК(−145, −45)=НОК(145, 45) . Определив НОД(145, 45)=5 (например, по алгоритму Евклида), вычисляем НОК(145, 45)=145·45:НОД(145, 45)= 145·45:5=1 305 . Таким образом, наименьшее общее кратное отрицательных целых чисел −145 и −45 равно 1 305 .

    www.cleverstudents.ru

    Продолжаем изучать деление. В данном уроке мы рассмотрим такие понятия, как НОД и НОК .

    НОД - это наибольший общий делитель.

    НОК - это наименьшее общее кратное.

    Тема довольно скучная, но разобраться в ней нужно обязательно. Не понимая этой темы, не получится эффективно работать с дробями, которые являются настоящей преградой в математике.

    Наибольший общий делитель

    Определение. Наибольшим общим делителем чисел a и b a и b делятся без остатка.

    Чтобы хорошо понять это определение, подставим вместо переменных a и b любые два числа, например, вместо переменной a подставим число 12, а вместо переменной b число 9. Теперь попробуем прочитать это определение:

    Наибольшим общим делителем чисел 12 и 9 называется наибольшее число, на которое 12 и 9 делятся без остатка.

    Из определения понятно, что речь идёт об общем делителе чисел 12 и 9, причем этот делитель является наибольшим из всех существующих делителей. Этот наибольший общий делитель (НОД) нужно найти.

    Для нахождения наибольшего общего делителя двух чисел, используется три способа. Первый способ довольно трудоёмкий, но зато позволяет хорошо понять суть темы и прочувствовать весь ее смысл.

    Второй и третий способы довольны просты и дают возможность быстро найти НОД. Мы с вами рассмотрим все три способа. А какой применять на практике - выбирать вам.

    Первый способ заключается в поиске всех возможных делителей двух чисел и в выборе наибольшего из них. Рассмотрим этот способ на следующем примере: найти наибольший общий делитель чисел 12 и 9 .

    Сначала найдём все возможные делители числа 12. Для этого разделим 12 на все делители в диапазоне от 1 до 12. Если делитель позволит разделить 12 без остатка, то мы будем выделять его синим цветом и в скобках делать соответствующее пояснение.

    12: 1 = 12
    (12 разделилось на 1 без остатка, значит 1 является делителем числа 12)

    12: 2 = 6
    (12 разделилось на 2 без остатка, значит 2 является делителем числа 12)

    12: 3 = 4
    (12 разделилось на 3 без остатка, значит 3 является делителем числа 12)

    12: 4 = 3
    (12 разделилось на 4 без остатка, значит 4 является делителем числа 12)

    12: 5 = 2 (2 в остатке)
    (12 не разделилось на 5 без остатка, значит 5 не является делителем числа 12)

    12: 6 = 2
    (12 разделилось на 6 без остатка, значит 6 является делителем числа 12)

    12: 7 = 1 (5 в остатке)
    (12 не разделилось на 7 без остатка, значит 7 не является делителем числа 12)

    12: 8 = 1 (4 в остатке)
    (12 не разделилось на 8 без остатка, значит 8 не является делителем числа 12)

    12: 9 = 1 (3 в остатке)
    (12 не разделилось на 9 без остатка, значит 9 не является делителем числа 12)

    12: 10 = 1 (2 в остатке)
    (12 не разделилось на 10 без остатка, значит 10 не является делителем числа 12)

    12: 11 = 1 (1 в остатке)
    (12 не разделилось на 11 без остатка, значит 11 не является делителем числа 12)

    12: 12 = 1
    (12 разделилось на 12 без остатка, значит 12 является делителем числа 12)

    Теперь найдём делители числа 9. Для этого проверим все делители от 1 до 9

    9: 1 = 9
    (9 разделилось на 1 без остатка, значит 1 является делителем числа 9)

    9: 2 = 4 (1 в остатке)
    (9 не разделилось на 2 без остатка, значит 2 не является делителем числа 9)

    9: 3 = 3
    (9 разделилось на 3 без остатка, значит 3 является делителем числа 9)

    9: 4 = 2 (1 в остатке)
    (9 не разделилось на 4 без остатка, значит 4 не является делителем числа 9)

    9: 5 = 1 (4 в остатке)
    (9 не разделилось на 5 без остатка, значит 5 не является делителем числа 9)

    9: 6 = 1 (3 в остатке)
    (9 не разделилось на 6 без остатка, значит 6 не является делителем числа 9)

    9: 7 = 1 (2 в остатке)
    (9 не разделилось на 7 без остатка, значит 7 не является делителем числа 9)

    9: 8 = 1 (1 в остатке)
    (9 не разделилось на 8 без остатка, значит 8 не является делителем числа 9)

    9: 9 = 1
    (9 разделилось на 9 без остатка, значит 9 является делителем числа 9)

    Теперь выпишем делители обоих чисел. Числа выделенные синим цветом и являются делителями. Их и выпишем:

    Выписав делители, можно сразу определить, какой является наибольшим и общим.

    Согласно определению, наибольшим общим делителем чисел 12 и 9, является число, на которое 12 и 9 делятся без остатка. Наибольшим и общим делителем чисел 12 и 9 является число 3

    И число 12 и число 9 делятся на 3 без остатка:

    Значит НОД (12 и 9) = 3

    Второй способ нахождения НОД

    Теперь рассмотрим второй способ нахождения наибольшего общего делителя. Суть данного способа заключается в том, чтобы разложить оба числа на простые множители и перемножить общие из них.

    Пример 1 . Найти НОД чисел 24 и 18

    Сначала разложим оба числа на простые множители:

    Теперь перемножим их общие множители. Чтобы не запутаться, общие множители можно подчеркнуть.

    Смотрим на разложение числа 24. Первый его множитель это 2. Ищем такой же множитель в разложении числа 18 и видим, что он там тоже есть. Подчеркиваем обе двойки:

    Снова смотрим на разложение числа 24. Второй его множитель тоже 2. Ищем такой же множитель в разложении числа 18 и видим, что его там второй раз уже нет. Тогда ничего не подчёркиваем.

    Следующая двойка в разложении числа 24 также отсутствует в разложении числа 18.

    Переходим к последнему множителю в разложении числа 24. Это множитель 3. Ищем такой же множитель в разложении числа 18 и видим, что там он тоже есть. Подчеркиваем обе тройки:

    Итак, общими множителями чисел 24 и 18 являются множители 2 и 3. Чтобы получить НОД, эти множители необходимо перемножить:

    Значит НОД (24 и 18) = 6

    Третий способ нахождения НОД

    Теперь рассмотрим третий способ нахождения наибольшего общего делителя. Суть данного способа заключается в том, что числа подлежащие поиску наибольшего общего делителя раскладывают на простые множители. Затем из разложения первого числа вычеркивают множители, которые не входят в разложение второго числа. Оставшиеся числа в первом разложении перемножают и получают НОД.

    Например, найдём НОД для чисел 28 и 16 этим способом. В первую очередь, раскладываем эти числа на простые множители:

    Получили два разложения: и

    Теперь из разложения первого числа вычеркнем множители, которые не входят в разложение второго числа. В разложение второго числа не входит семерка. Её и вычеркнем из первого разложения:

    Теперь перемножаем оставшиеся множители и получаем НОД:

    Число 4 является наибольшим общим делителем чисел 28 и 16. Оба этих числа делятся на 4 без остатка:

    Пример 2. Найти НОД чисел 100 и 40

    Раскладываем на множители число 100

    Раскладываем на множители число 40

    Получили два разложения:

    Теперь из разложения первого числа вычеркнем множители, которые не входят в разложение второго числа. В разложение второго числа не входит одна пятерка (там только одна пятёрка). Её и вычеркнем из первого разложения

    Перемножим оставшиеся числа:

    Получили ответ 20. Значит число 20 является наибольшим общим делителем чисел 100 и 40. Эти два числа делятся на 20 без остатка:

    НОД (100 и 40) = 20.

    Пример 3. Найти НОД чисел 72 и 128

    Раскладываем на множители число 72

    Раскладываем на множители число 128

    2 × 2 × 2 × 2 × 2 × 2 × 2

    Теперь из разложения первого числа вычеркнем множители, которые не входят в разложение второго числа. В разложение второго числа не входят две тройки (там их вообще нет). Их и вычеркнем из первого разложения:

    Получили ответ 8. Значит число 8 является наибольшим общим делителем чисел 72 и 128. Эти два числа делятся на 8 без остатка:

    НОД (72 и 128) = 8

    Нахождение НОД для нескольких чисел

    Наибольший общий делитель можно находить и для нескольких чисел, а не только для двух. Для этого числа, подлежащие поиску наибольшего общего делителя, раскладывают на простые множители, затем находят произведение общих простых множителей этих чисел.

    Например, найдём НОД для чисел 18, 24 и 36

    Разложим на множители число 18

    Разложим на множители число 24

    Разложим на множители число 36

    Получили три разложения:

    Теперь выделим и подчеркнём общие множители в этих числах. Общие множители должны входить во все три числа:

    Мы видим, что общие множители для чисел 18, 24 и 36 это множители 2 и 3. Перемножив эти множители, мы получим НОД, который ищем:

    Получили ответ 6. Значит число 6 является наибольшим общим делителем чисел 18, 24 и 36. Эти три числа делятся на 6 без остатка:

    НОД (18, 24 и 36) = 6

    Пример 2. Найти НОД для чисел 12, 24, 36 и 42

    Разложим на простые множители каждое число. Затем найдём произведение общих множителей этих чисел.

    Разложим на множители число 12

    Разложим на множители число 42

    Получили четыре разложения:

    Теперь выделим и подчеркнём общие множители в этих числах. Общие множители должны входить во все четыре числа:

    Мы видим, что общие множители для чисел 12, 24, 36, и 42 это множители 2 и 3. Перемножив эти множители, мы получим НОД, который ищем:

    Получили ответ 6. Значит число 6 является наибольшим общим делителем чисел 12, 24, 36 и 42. Эти числа делятся на 6 без остатка:

    НОД (12, 24 , 36 и 42) = 6

    Из предыдущего урока мы знаем, что если какое-то число без остатка разделилось на другое, его называют кратным этого числа.

    Оказывается, кратное может быть общим у нескольких чисел. И сейчас нас будет интересовать кратное двух чисел, при этом оно должно быть максимально маленьким.

    Определение. Наименьшее общее кратное (НОК) чисел a и b - a и b a и число b .

    Определение содержит две переменные a и b . Давайте подставим вместо этих переменных любые два числа. Например, вместо переменной a подставим число 9, а вместо переменной b подставим число 12. Теперь попробуем прочитать определение:

    Наименьшее общее кратное (НОК) чисел 9 и 12 - это наименьшее число, которое кратно 9 и 12 . Другими словами, это такое маленькое число, которое делится без остатка на число 9 и на число 12 .

    Из определения понятно, что НОК это наименьшее число, которое делится без остатка на 9 и на 12. Этот НОК требуется найти.

    Для нахождения наименьшего общего кратного (НОК) можно пользоваться двумя способами. Первый способ заключается в том, что можно выписать первые кратные двух чисел, а затем выбрать среди этих кратных такое число, которое будет общим для обоих чисел и маленьким. Давайте применим этот способ.

    В первую очередь, найдем первые кратные для числа 9. Чтобы найти кратные для 9, нужно эту девятку поочерёдно умножить на числа от 1 до 9. Получаемые ответы будут кратными для числа 9. Итак, начнём. Кратные будем выделять красным цветом:

    Теперь находим кратные для числа 12. Для этого, поочерёдно умножаем 12 на все числа 1 до 12.

    Наибольший общий делитель – это еще один показатель, позволяющий упростить работу с дробями. Очень часто в результате вычислений получаются дроби с очень большими значениями числителя и знаменателя. Сокращать поэтапно такие числа можно, но это крайне долго, поэтому проще сразу найти НОД и сократить на него. Разберемся в теме подробнее.

    Что такое НОД?

    Наибольший общий делитель (НОД) ряда чисел – это наибольшее число, на которое можно без остатка разделить каждое из чисел ряда.

    Как найти НОД?

    Для того, чтобы найти НОД необходимо каждое из чисел разложить на простые множители и выделить общую часть.

    Специальной формулы для этого не придумали, зато есть алгоритм вычисления.

    Приведем пример нахождения наибольшего общего делителя двух натуральных чисел: 540 и 252. Разложим 640 на простые множители. Последовательность действий такова:

    • Делим число на наименьший из возможных простых чисел. То есть, если число можно разделить на 2, 3 или 5, то сначала нужно делить на 5. Просто, чтобы не запутаться.
    • Получившийся результат делим на наименьшее из возможных простых чисел.
    • Повторяем деление каждого полученного результата, пока не получим простое число.

    Теперь проведем ту же процедуру на практике.

    • 540: 2=270
    • 270:2=135
    • 135: 3 =45
    • 45: 3=15
    • 15: 5 = 3

    Запишем результат в виде равенства 540=2*2*3*3*3*5. Для того, чтобы записать результат, нужно последнее получившееся число умножить на все делители.

    Аналогично поступим с числом 252:

    • 252: 2=126
    • 126: 2=63
    • 63: 3=21
    • 21: 3 = 7

    Запишем результат: 252=2*2*3*3*7.

    В каждом разложении есть одинаковые числа. Найдем их, это два числа 2 и два числа 3. Отличаются только 7 и 3*5.

    Для того, чтобы найти НОД нужно перемножить общие множетели. То есть в произведении будет две двойки и две тройки.

    НОД=2*2*3*3=36

    Как можно это использовать?

    Задача: сократить дробь $$252\over540$$.

    НОД для двух этих чисел мы уже находили, теперь просто воспользуемся уже посчитанным значением.

    Сократим числитель и знаменатель дроби на 36 и получим ответ.

    $${252\over540} ={7\over15}$$ - чтобы быстро сократить, достаточно посмотреть на разложение чисел.

    Если 540=2*2*3*3*3*5, а НОД=36=2*2*3*3, то 540 = 36*3*5. И если мы поделим 540 на 36, то получим 3*5=15.

    Без НОД нам пришлось бы в одну длинную строку писать сокращения. К тому же, бывают случаи, когда непонятно, можно ли сократить дробь вообще. Для таких ситуаций в математике и придумали разложение чисел на простые множители и НОД.

    Что мы узнали?

    Мы узнали, что такое наибольший общий делитель пары чисел, разобрались, как можно использовать показатель на практике, решили задачу на нахождение НОД и применение НОД для сокращения дробей. Поняли, что с использованием НОД можно проще и быстрее сократить громоздкие дроби, найдя НОД для числителя и знаменателя.

    Тест по теме

    Оценка статьи

    Средняя оценка: 4.3 . Всего получено оценок: 204.

    Делимое, которое делится на данный делитель без остатка, иначе называют кратным . Например, 48 кратно 8, число 48 - кратное, число 8 - делитель.

    Число может быть кратно не одному, а сразу нескольким числам, такое число называют общим кратным . Например, число 77 общее кратное чисел: 1, 7, 11, 77.

    Ещё пример. Числу 3 кратны числа 12, 15 , 24, 27, 30 и т. д. Числу 5 кратны числа 10, 15 , 25, 30 , 35 и т. д. Числа 3 и 5 имеют общие кратные 15 и 30.

    Найти общее кратное нескольких чисел довольно просто, можно просто перемножить данные числа, в результате, произведение этих чисел и будет их общим кратным.

    НОК

    Из всех общих кратных для данных чисел, особый интерес представляет наименьшее общее кратное.

    Наименьшим общим кратным (сокращённо НОК) нескольких данных чисел называется самое маленькое число, которое делится нацело на каждое из данных чисел.

    Например, для трёх чисел: 3, 5 и 12 наименьшим общим кратным является число 60, так как никакое другое число меньше 60 не делится нацело на 3, на 5 и на 12.

    Обычно наименьшее общее кратное записывают так: НОК (a , b , ...) = x .

    Согласно этому, запишем наименьшее общее кратное чисел 3, 5 и 12:

    НОК (3, 5, 12) = 60.

    Калькулятор НОК

    Данный калькулятор поможет вам найти наименьшее общее кратное чисел. Просто введите числа через пробел или запятую и нажмите кнопку Вычислить НОК.


    Представленный ниже материал является логическим продолжением теории из статьи под заголовком НОК - наименьшее общее кратное, определение, примеры, связь между НОК и НОД . Здесь мы поговорим про нахождение наименьшего общего кратного (НОК) , и особое внимание уделим решению примеров. Сначала покажем, как вычисляется НОК двух чисел через НОД этих чисел. Дальше рассмотрим нахождение наименьшего общего кратного с помощью разложения чисел на простые множители. После этого остановимся на нахождении НОК трех и большего количества чисел, а также уделим внимание вычислению НОК отрицательных чисел.

    Навигация по странице.

    Вычисление наименьшего общего кратного (НОК) через НОД

    Один из способов нахождения наименьшего общего кратного основан на связи между НОК и НОД . Существующая связь между НОК и НОД позволяет вычислять наименьшее общее кратное двух целых положительных чисел через известный наибольший общий делитель. Соответствующая формула имеет вид НОК(a, b)=a·b:НОД(a, b) . Рассмотрим примеры нахождения НОК по приведенной формуле.

    Пример.

    Найдите наименьшее общее кратное двух чисел 126 и 70 .

    Решение.

    В этом примере a=126 , b=70 . Воспользуемся связью НОК с НОД, выражающуюся формулой НОК(a, b)=a·b:НОД(a, b) . То есть, сначала нам предстоит найти наибольший общий делитель чисел 70 и 126 , после чего мы сможем вычислить НОК этих чисел по записанной формуле.

    Найдем НОД(126, 70) , используя алгоритм Евклида: 126=70·1+56 , 70=56·1+14 , 56=14·4 , следовательно, НОД(126, 70)=14 .

    Теперь находим требуемое наименьшее общее кратное: НОК(126, 70)=126·70:НОД(126, 70)= 126·70:14=630 .

    Ответ:

    НОК(126, 70)=630 .

    Пример.

    Чему равно НОК(68, 34) ?

    Решение.

    Так как 68 делится нацело на 34 , то НОД(68, 34)=34 . Теперь вычисляем наименьшее общее кратное: НОК(68, 34)=68·34:НОД(68, 34)= 68·34:34=68 .

    Ответ:

    НОК(68, 34)=68 .

    Заметим, что предыдущий пример подходит под следующее правило нахождения НОК для целых положительные чисел a и b : если число a делится на b , то наименьшее общее кратное этих чисел равно a .

    Нахождение НОК с помощью разложения чисел на простые множители

    Другой способ нахождения наименьшего общего кратного базируется на разложении чисел на простые множители . Если составить произведение из всех простых множителей данных чисел, после чего из этого произведения исключить все общие простые множители, присутствующие в разложениях данных чисел, то полученное произведение будет равно наименьшему общему кратному данных чисел .

    Озвученное правило нахождения НОК следует из равенства НОК(a, b)=a·b:НОД(a, b) . Действительно, произведение чисел a и b равно произведению всех множителей, участвующих в разложениях чисел a и b . В свою очередь НОД(a, b) равен произведению всех простых множителей, одновременно присутствующих в разложениях чисел a и b (о чем написано в разделе нахождение НОД с помощью разложения чисел на простые множители).

    Приведем пример. Пусть мы знаем, что 75=3·5·5 и 210=2·3·5·7 . Составим произведение из всех множителей данных разложений: 2·3·3·5·5·5·7 . Теперь из этого произведения исключим все множители, присутствующие и в разложении числа 75 и в разложении числа 210 (такими множителями являются 3 и 5 ), тогда произведение примет вид 2·3·5·5·7 . Значение этого произведения равно наименьшему общему кратному чисел 75 и 210 , то есть, НОК(75, 210)= 2·3·5·5·7=1 050 .

    Пример.

    Разложив числа 441 и 700 на простые множители, найдите наименьшее общее кратное этих чисел.

    Решение.

    Разложим числа 441 и 700 на простые множители:

    Получаем 441=3·3·7·7 и 700=2·2·5·5·7 .

    Теперь составим произведение из всех множителей, участвующих в разложениях данных чисел: 2·2·3·3·5·5·7·7·7 . Исключим из этого произведения все множители, одновременно присутствующие в обоих разложениях (такой множитель только один – это число 7 ): 2·2·3·3·5·5·7·7 . Таким образом, НОК(441, 700)=2·2·3·3·5·5·7·7=44 100 .

    Ответ:

    НОК(441, 700)= 44 100 .

    Правило нахождения НОК с использованием разложения чисел на простые множители можно сформулировать немного иначе. Если ко множителям из разложения числа a добавить недостающие множители из разложения числа b , то значение полученного произведения будет равно наименьшему общему кратному чисел a и b .

    Для примера возьмем все те же числа 75 и 210 , их разложения на простые множители таковы: 75=3·5·5 и 210=2·3·5·7 . Ко множителям 3 , 5 и 5 из разложения числа 75 добавляем недостающие множители 2 и 7 из разложения числа 210 , получаем произведение 2·3·5·5·7 , значение которого равно НОК(75, 210) .

    Пример.

    Найдите наименьшее общее кратное чисел 84 и 648 .

    Решение.

    Получаем сначала разложения чисел 84 и 648 на простые множители. Они имеют вид 84=2·2·3·7 и 648=2·2·2·3·3·3·3 . К множителям 2 , 2 , 3 и 7 из разложения числа 84 добавляем недостающие множители 2 , 3 , 3 и 3 из разложения числа 648 , получаем произведение 2·2·2·3·3·3·3·7 , которое равно 4 536 . Таким образом, искомое наименьшее общее кратное чисел 84 и 648 равно 4 536 .

    Ответ:

    НОК(84, 648)=4 536 .

    Нахождение НОК трех и большего количества чисел

    Наименьшее общее кратное трех и большего количества чисел может быть найдено через последовательное нахождение НОК двух чисел. Напомним соответствующую теорему, дающую способ нахождения НОК трех и большего количества чисел.

    Теорема.

    Пусть даны целые положительные числа a 1 , a 2 , …, a k , наименьшее общее кратное m k этих чисел находится при последовательном вычислении m 2 =НОК(a 1 , a 2) , m 3 =НОК(m 2 , a 3) , …, m k =НОК(m k−1 , a k) .

    Рассмотрим применение этой теоремы на примере нахождения наименьшего общего кратного четырех чисел.

    Пример.

    Найдите НОК четырех чисел 140 , 9 , 54 и 250 .

    Решение.

    В этом примере a 1 =140 , a 2 =9 , a 3 =54 , a 4 =250 .

    Сначала находим m 2 =НОК(a 1 , a 2)=НОК(140, 9) . Для этого по алгоритму Евклида определяем НОД(140, 9) , имеем 140=9·15+5 , 9=5·1+4 , 5=4·1+1 , 4=1·4 , следовательно, НОД(140, 9)=1 , откуда НОК(140, 9)=140·9:НОД(140, 9)= 140·9:1=1 260 . То есть, m 2 =1 260 .

    Теперь находим m 3 =НОК(m 2 , a 3)=НОК(1 260, 54) . Вычислим его через НОД(1 260, 54) , который также определим по алгоритму Евклида: 1 260=54·23+18 , 54=18·3 . Тогда НОД(1 260, 54)=18 , откуда НОК(1 260, 54)= 1 260·54:НОД(1 260, 54)= 1 260·54:18=3 780 . То есть, m 3 =3 780 .

    Осталось найти m 4 =НОК(m 3 , a 4)=НОК(3 780, 250) . Для этого находим НОД(3 780, 250) по алгоритму Евклида: 3 780=250·15+30 , 250=30·8+10 , 30=10·3 . Следовательно, НОД(3 780, 250)=10 , откуда НОК(3 780, 250)= 3 780·250:НОД(3 780, 250)= 3 780·250:10=94 500 . То есть, m 4 =94 500 .

    Таким образом, наименьшее общее кратное исходных четырех чисел равно 94 500 .

    Ответ:

    НОК(140, 9, 54, 250)=94 500 .

    Во многих случаях наименьшее общее кратное трех и большего количества чисел удобно находить с использованием разложений данных чисел на простые множители. При этом следует придерживаться следующего правила. Наименьшее общее кратное нескольких чисел равно произведению, которое составляется так: ко всем множителям из разложения первого числа добавляются недостающие множители из разложения второго числа, к полученным множителям добавляются недостающие множители из разложения третьего числа и так далее .

    Рассмотрим пример нахождения наименьшего общего кратного с использованием разложения чисел на простые множители.

    Пример.

    Найдите наименьшее общее кратное пяти чисел 84 , 6 , 48 , 7 , 143 .

    Решение.

    Сначала получаем разложения данных чисел на простые множители: 84=2·2·3·7 , 6=2·3 , 48=2·2·2·2·3 , 7 (7 – простое число , оно совпадает со своим разложением на простые множители) и 143=11·13 .

    Для нахождения НОК данных чисел к множителям первого числа 84 (ими являются 2 , 2 , 3 и 7 ) нужно добавить недостающие множители из разложения второго числа 6 . Разложение числа 6 не содержит недостающих множителей, так как и 2 и 3 уже присутствуют в разложении первого числа 84 . Дальше к множителям 2 , 2 , 3 и 7 добавляем недостающие множители 2 и 2 из разложения третьего числа 48 , получаем набор множителей 2 , 2 , 2 , 2 , 3 и 7 . К этому набору на следующем шаге не придется добавлять множителей, так как 7 уже содержится в нем. Наконец, к множителям 2 , 2 , 2 , 2 , 3 и 7 добавляем недостающие множители 11 и 13 из разложения числа 143 . Получаем произведение 2·2·2·2·3·7·11·13 , которое равно 48 048 .

    Одной из задач, вызывающих проблему у современных школьников, привыкших к месту и не к месту использовать калькуляторы, встроенные в гаджеты, является нахождение наибольшего общего делителя (НОД) двух и более чисел.

    Невозможно решить никакую математическую задачу, если неизвестно, о чём собственно спрашивают. Для этого нужно знать, что означает то или иное выражение , используемое в математике.

    Общие понятия и определения

    Необходимо знать:

    1. Если некое число можно использовать для подсчёта различных предметов, например, девять столбов, шестнадцать домов, то оно является натуральным. Самым маленьким из них будет единица.
    2. Когда натуральное число делится на другое натуральное число, то говорят, что меньшее число - это делитель большего.
    3. Если два и более различных числа делятся на некое число без остатка, то говорят, что последнее будет их общим делителем (ОД).
    4. Самый большой из ОД именуется наибольшим общим делителем (НОД).
    5. В таком случае, когда у числа есть только два натуральных делителя (оно само и единичка), оно называется простым. Самое маленькое среди них - двойка, к тому же она и единственное чётное в их ряду.
    6. В случае если у двух чисел максимальным общим делителем является единица, то они будут взаимно простыми.
    7. Число, у которого больше чем два делителя, именуется составным.
    8. Процесс когда находятся все простые множители, которые при умножении между собой дадут в произведении начальное значение в математике называют разложением на простые множители. Причём одинаковые множители в разложении могут встречаться неоднократно.

    В математике приняты следующие записи:

    1. Делители Д (45) = (1;3;5;9;45).
    2. ОД (8;18) = (1;2).
    3. НОД (8;18) = 2.

    Различные способы найти НОД

    Проще всего ответить на вопрос как найти НОД в том случае, когда меньшее число является делителем большего. Оно и будет в подобном случае наибольшим общим делителем.

    Например, НОД (15;45) = 15, НОД (48;24) = 24.

    Но такие случаи в математике являются весьма редкими, поэтому для того, чтобы находить НОД используются более сложные приёмы, хотя проверять этот вариант перед началом работы все же весьма рекомендуется.

    Способ разложения на простые сомножители

    Если необходимо найти НОД двух или более различных чисел , достаточно разложить каждое из них на простые сомножители, а затем произвести процесс умножения тех из них, которые имеются в каждом из чисел.

    Пример 1

    Рассмотрим, как находить НОД 36 и 90:

    1. 36 = 1*2*2*3*3;
    2. 90 = 1*2*3*3*5;

    НОД (36;90) = 1*2*3*3 = 18.

    Теперь посмотрим как находить то же самое в случае трёх чисел , возьмём для примера 54; 162; 42.

    Как разложить 36 мы уже знаем, разберёмся с остальными:

    1. 162 = 1*2*3*3*3*3;
    2. 42 = 1*2*3*7;

    Таким образом, НОД (36;162;42) = 1*2*3 = 6.

    Следует заметить, что единицу в разложении писать совершенно необязательно.

    Рассмотрим способ, как просто раскладывать на простые множители , для этого слева запишем необходимую нам цифру, а справа станем писать простые делители.

    Разделять колонки можно, как знаком деления, так и простой вертикальной чертой.

    1. 36 / 2 продолжим наш процесс деления;
    2. 18 / 2 далее;
    3. 9 / 3 и ещё раз;
    4. 3 / 3 сейчас совсем элементарно;
    5. 1 - результат готов.

    Искомое 36 = 2*2*3*3.

    Евклидов способ

    Этот вариант известен человечеству ещё со времён древнегреческой цивилизации, он во многом проще, и приписывается великому математику Евклиду, хотя весьма похожие алгоритмы применялись и ранее. Этот способ заключается в использовании следующего алгоритма , мы делим большее число с остатком на меньшее. Затем наш делитель делим на остаток и продолжаем так действовать по кругу пока не произойдёт деление нацело. Последнее значение и окажется искомым наибольшим общим делителем.

    Приведём пример использования данного алгоритма :

    попробуем выяснить какой НОД у 816 и 252:

    1. 816 / 252 = 3 и остаток 60. Сейчас 252 разделим на 60;
    2. 252 / 60 = 4 в остатке на этот раз окажется 12. Продолжим наш круговой процесс, разделим шестьдесят на двенадцать;
    3. 60 / 12 = 5. Поскольку на сей раз никакого остатка мы не получили, то у нас готов результат, двенадцать будет искомым для нас значением.

    Итак, по завершении нашего процесса мы получили НОД (816;252) = 12.

    Действия при необходимости определения НОД если задано более двух значений

    Мы уже разобрались, что делать в случае, когда имеется два различных числа, теперь научимся действовать, если их имеется 3 и более .

    При всей кажущейся сложности, данная задача проблем у нас уже не вызовет. Сейчас мы выбираем два любые числа и определяем искомое для них значение. Следующим шагом отыскиваем НОД у полученного результата и третьего из заданных значений. Затем снова действуем по уже известному нам принципу для четвёртого пятого и так далее.

    Заключение

    Итак, при кажущейся большой сложности поставленной перед нами изначально задачи, на самом деле все просто, главное уметь выполнять безошибочно процесс делений и придерживаться любого из двух описанных выше алгоритмов.

    Хотя оба способа и являются вполне приемлемыми, в общеобразовательной школе гораздо чаще применяется первый способ . Это связано с тем, что разложение на простые множители понадобится при изучении следующей учебной темы - определение наибольшего общего кратного (НОК). Но все же стоит ещё раз заметить - применение алгоритма Евклида ни в коей мере не может считаться ошибочным.

    Видео

    С помощью видео вы сможете узнать, как найти наибольший общий делитель.

     


    Читайте:



    Упражнения в правописании слов со слогами ЖИ-ШИ, ЧА-ЩА, ЧУ- ЩУ

    Упражнения в правописании слов со слогами ЖИ-ШИ, ЧА-ЩА, ЧУ- ЩУ

    Вспомните, что вы знаете о звуках [ч’] и [щ’] ? Это согласные шипящие звуки, глухие, непарные, всегда мягкие. На письме обозначаются буквами Ч и...

    Транспорт и экономические связи Что мы узнали

    Транспорт и экономические связи Что мы узнали

    С 1992 по 1996 год я работала в Акиловской основной школе Кочёвского района Пермской области. Данное образовательное учреждение было объявлено...

    Реферат: Какое из названных событий произошло раньше других

    Реферат: Какое из названных событий произошло раньше других

    Контрольная работа №1 Вариант №1 1.Какое из названных событий произошло раньше всех других ? вступление России в Первую мировую войнуначало...

    Площадь трапеции: формулы с примерами

    Площадь трапеции: формулы с примерами

    В этой статье для вас сделана очередная подборка задач с трапецией. Условия так или иначе связаны с её средней линией. Типы заданий взяты из...

    feed-image RSS