Главная - Хикс Джерри
Определение многоугольника и его элементов. Урок "Многоугольники. Виды многоугольников" в рамках технологии "Развитие критического мышления через чтение и письмо". Отношение площадей подобных многоугольников

Владение терминологией, а также знание свойств различных геометрических фигур помогут в решении многих задач по геометрии. Изучая такой раздел как планиметрия, учащийся не редко встречает термин “многоугольник”. Какую фигуру характеризует данное понятие?

Многоугольник – определение геометрической фигуры

Замкнутая ломаная линия, все участки которой лежат в одной плоскости и не имеют участков самопересечения, образует геометрическую фигуру под названием многоугольник. Число звеньев ломаной должно быть не менее 3-х. Иными словами, многоугольник определяется как часть плоскости, границей которой выступает замкнутая ломаная.

В ходе решения задач с участием многоугольника, нередко фигурируют такие понятия как:

  • Сторона многоугольника. Данный термин характеризует отрезок (звено) ломаной цепи искомой фигуры.
  • Угол многоугольника (внутренний) – угол, который формируют 2 смежных звена ломаной.
  • Вершина многоугольника определяется как вершина ломаной.
  • Диагональ многоугольника – отрезок, соединяющие любые 2 вершины (кроме соседних) многоугольной фигуры.

При этом число звеньев и число вершин ломаной в пределах одного многоугольника совпадают. В зависимости от количества углов (или отрезков ломаной соответственно) определяется и вид многоугольника:

  • 3 угла – треугольник.
  • 4 угла – четырехугольник.
  • 5 углов – пятиугольник и т.д.

Если многоугольная фигура имеет равные углы и соответственно стороны, то говорят, что данный многоугольник правильный.

Типы многоугольников

Все многоугольные геометрические фигуры разделяются на 2 типа – выпуклые и вогнутые.

  • Если любая из сторон многоугольника после продолжения до прямой не образует с собственно фигурой точек пересечения, перед вами выпуклая многоугольная фигура.
  • Если после продолжения стороны (любой) полученная прямая пересекает многоугольник, речь идет о вогнутом многоугольнике.


Свойства многоугольника

Вне зависимости от того, является изучаемая многоугольная фигура правильной или нет, она обладает приведенными ниже свойствами. Так:

  • Ее внутренние углы суммарно образуют (p – 2)*π, где

π – радианная мера развернутого угла, соответствует 180°,

p – число углов (вершин) многоугольной фигуры (p-угольника).

  • Количество диагоналей всякой многоугольной фигуры определяется из соотношения p*(p – 3) / 2, где

p – число сторон p-угольника.


§ 1 Понятие треугольника

В этом уроке Вы познакомитесь с такими фигурами как треугольник и многоугольник.

Если три точки, не лежащие на одной прямой, соединить отрезками, то получится треугольник. Треугольник имеет три вершины и три стороны.

Перед вами треугольник АВС, он имеет три вершины (точку А, точку В и точку С) и три стороны (АВ, АС и СВ).

Кстати, эти же стороны можно называть и по-другому:

АВ=ВА, АС=СА, СВ=ВС.

Стороны треугольника образуют в вершинах треугольника три угла. На рисунке вы видите угол А, угол В, угол С.

Таким образом, треугольник - это геометрическая фигура, образованнаятремя отрезками, которые соединяют три, не лежащие на одной прямой, точки.

§ 2 Понятие многоугольника и его виды

Кроме треугольников, существуют четырехугольники, пятиугольники, шестиугольники и так далее. Одним словом их можно назвать многоугольники.

На рисунке Вы видите четырехугольник DMKE.

Точки D, M, K и E являются вершинами четырехугольника.

Отрезки DM, MK, KE, ED являются сторонами данного четырехугольника. Так же, как и в случае с треугольником, стороны четырехугольника образуют в вершинах четыре угла, как Вы догадались, отсюда и название - четырехугольник. У данного четырехугольника вы видите на рисунке угол D, угол M, угол K и угол E.

А какие четырехугольники Вам уже известны?

Квадрат и прямоугольник! Каждый из них имеет по четыре угла и четыре стороны.

Еще один вид многоугольников - пятиугольник.

Точки O, P, X, Y, Т являются вершинами пятиугольника, а отрезки TO, OP, PX, XY, YT являются сторонами данного пятиугольника. У пятиугольника соответственно пять углов и пять сторон.

Как Вы считаете, сколько углов и сколько сторон у шестиугольника? Правильно, шесть! Рассуждая аналогичным образом, можно сказать, сколько сторон, вершин или углов имеет тот или иной многоугольник. И можно сделать вывод, что треугольник — это тоже многоугольник, у которого имеется ровно три угла, три стороны и три вершины.

Таким образом, на этом уроке Вы познакомились с такими понятиями как треугольник и многоугольник. Узнали, что треугольник имеет 3 вершины, 3 стороны и 3 угла, четырехугольник - 4 вершины, 4 стороны и 4 угла, пятиугольник - соответственно 5 сторон, 5 вершин,5 углов и так далее.

Список использованной литературы:

  1. Математика 5 класс. Виленкин Н.Я., Жохов В.И. и др. 31-е изд., стер. - М: 2013.
  2. Дидактические материалы по математике 5 класс. Автор - Попов М.А. - 2013 год
  3. Вычисляем без ошибок. Работы с самопроверкой по математике 5-6 классы. Автор - Минаева С.С. - 2014 год
  4. Дидактические материалы по математике 5 класс. Авторы: Дорофеев Г.В., Кузнецова Л.В. - 2010 год
  5. Контрольные и самостоятельные работы по математике 5 класс. Авторы - Попов М.А. - 2012 год
  6. Математика. 5 класс: учеб. для учащихся общеобразоват. учреждений / И. И. Зубарева, А. Г. Мордкович. - 9-е изд., стер. - М.: Мнемозина, 2009

Многоугольником называется геометрическая фигура, которая со всех сторон ограничена замкнутой ломаной линией. При этом количество звеньев ломаной не должно быть меньше трех. Каждая пара отрезков ломаной имеет общую точку и образует углы. Количество углов совместно с количеством отрезков ломаной являются основными характеристиками многоугольника. В каждом многоугольнике количество звеньев ограничивающей замкнутой ломаной совпадает с количеством углов.

Сторонами в геометрии принято называть звенья ломаной линии, которая ограничивает геометрический объект. Вершинами называют точки соприкосновения двух соседних сторон , по количеству которых получают свои названия многоугольники.

Если замкнутая ломаная состоит из трех отрезков, она носит название треугольника; соответственно, из четырех отрезков - четырехугольником, из пяти - пятиугольником и пр.

Для обозначения треугольника или четырехугольника пользуются заглавными латинскими буквами, обозначающими его вершины. Буквы называют по порядку - по часовой стрелке или против нее.

Основные понятия

Описывая определение многоугольника, следует учитывать некоторые смежные геометрические понятия:

  1. Если вершины являются концами одной стороны, они называются соседними.
  2. Если отрезок соединяет между собой несоседние вершины, то он имеет название диагонали. У треугольника не может быть диагоналей.
  3. Внутренний угол - это угол при одной из вершин, который образован двумя его сторонами, сходящимися в этой точке. Он всегда располагается во внутренней области геометрической фигуры. Если многоугольник невыпуклый, его размер может превосходить 180 градусов.
  4. Внешний угол при определенной вершине - это угол смежный с внутренним при ней же. Иными словами, внешним углом можно считать разность между 180° и величиной внутреннего угла.
  5. Сумма величин всех отрезков носит название периметра.
  6. Если все стороны и все углы равны - он носит название правильного. Правильными могут быть только выпуклые.

Как уже упоминалось выше, названия многоугольных геометрических строятся исходя из количества вершин. Если у фигуры их количество равняется n, она носит название n-угольника:

  1. Многоугольник называется плоским, если ограничивает конечную часть плоскости. Эта геометрическая фигура может быть вписанной в окружность или описанной вокруг окружности.
  2. Выпуклым называется n-угольник, который соответствует одному из условий, приведенных ниже.
  3. Фигура расположена по одну сторону от прямой линии, которая соединяет две соседних вершины.
  4. Эта фигура служит общей частью или пересечением нескольких полуплоскостей.
  5. Диагонали располагаются внутри многоугольника.
  6. Если концы отрезка располагаются в точках, которые принадлежат многоугольнику, весь отрезок принадлежит ему.
  7. Фигура может называться правильной, если у нее все отрезки и все углы равны. Примерами могут служить квадрат, равносторонний треугольник или правильный пятиугольник.
  8. Если n-угольник невыпуклый, все стороны и углы его равны, а вершины совпали с таковыми правильного n-угольника, он называется звездчатым. У таких фигур могут иметься самопересечения. Примерами могут служить пентаграмма или гексаграмма.
  9. Треугольник или четырехугольник называется вписанным в окружность, когда все его вершины располагаются внутри одной окружности. Если же стороны этой фигуры имеют точки соприкосновения с окружностью, это многоугольник описанным около некоторой окружности.

Любой выпуклый n-угольник можно поделить на треугольники . При этом количество треугольников бывает меньше количества сторон на 2.

Виды фигур

Это многоугольник с тремя вершинами и тремя отрезками, соединяющими их. При этом точки соединения отрезков не лежат на одной прямой.

Точки соединения отрезков - это вершины треугольника . Сами отрезки называются сторонами треугольника. Общая сумма внутренних углов каждого треугольника равняется 180°.

По соотношениям между сторонами все треугольники можно подразделять на несколько видов:

  1. Равносторонние - у которых длина всех отрезков одинаковая.
  2. Равнобедренные - треугольники, у которых равны два отрезка из трех.
  3. Разносторонние - если длина всех отрезков разная.

Кроме того, принято различать следующие треугольники:

  1. Остроугольные.
  2. Прямоугольные.
  3. Тупоугольные.

Четырехугольник

Четырехугольником называется плоская фигура, имеющая 4 вершины и 4 отрезка, которые их последовательно соединяют.

  1. Если все углы четырехугольника прямые - эта фигура называется прямоугольником.
  2. Прямоугольник, у которого все стороны имеют одинаковую величину, называется квадратом.
  3. Четырехугольник, все стороны которого равны, называется ромбом.

На одной прямой не может находиться сразу три вершины четырехугольника.

Видео

Дополнительную информацию о многоугольниках вы найдете в этом видео.

Виды многоугольников:

Четырехугольники

Четырехугольники , соответственно, состоят из 4-х сторон и углов.

Стороны и углы, расположенные напротив друг друга, называются противоположными .

Диагонали делят выпуклые четырехугольники на треугольники (см. на рисунке).

Сумма углов выпуклого четырехугольника равна 360° (по формуле: (4-2)*180°).

Параллелограммы

Параллелограмм - это выпуклый четырехугольник с противоположными параллельными сторонами (на рис. под номером 1).

Противоположные стороны и углы в параллелограмме всегда равны.

А диагонали в точке пересечения делятся пополам.

Трапеции

Трапеция - это тоже четырехугольник, и в трапеции параллельны только две стороны, которые называются основаниями . Другие стороны - это боковые стороны .

Трапеция на рисунке под номером 2 и 7.

Как и в треугольнике:

Если боковые стороны равны, то трапеция - равнобедренная ;

Если один из углов прямой, то трапеция - прямоугольная.

Средняя линия трапеции равна полусумме оснований и параллельна им.

Ромб

Ромб - это параллелограмм, у которого все стороны равны.

Помимо свойств параллелограмма, ромбы имеют своё особое свойство - диагонали ромба перпендикулярны друг другу и делят углы ромба пополам .

На рисунке ромб под номером 5.

Прямоугольники

Прямоугольник - это параллелограмм, у которого каждый угол прямой (см. на рис. под номером 8).

Помимо свойств параллелограмма, прямоугольники имеют своё особое свойство - диагонали прямоугольника равны .

Квадраты

Квадрат - это прямоугольник, у которого все стороны равны (№4).

Обладает свойствами прямоугольника и ромба (так как все стороны равны).

На этом уроке мы приступим уже к новой теме и введем новое для нас понятие «многоугольник». Мы рассмотрим основные понятия, связанные с многоугольниками: стороны, вершины углы, выпуклость и невыпуклость. Затем докажем важнейшие факты, такие как теорема о сумме внутренних углов многоугольника, теорема о сумме внешних углов многоугольника. В итоге, мы вплотную подойдем к изучению частных случаев многоугольников, которые будут рассматриваться на дальнейших уроках.

Тема: Четырехугольники

Урок: Многоугольники

В курсе геометрии мы изучаем свойства геометрических фигур и уже рассмотрели простейшие из них: треугольники и окружности. При этом мы обсуждали и конкретные частные случаи этих фигур, такие как прямоугольные, равнобедренные и правильные треугольники. Теперь пришло время поговорить о более общих и сложных фигурах - многоугольниках .

С частным случаем многоугольников мы уже знакомы - это треугольник (см. Рис. 1).

Рис. 1. Треугольник

В самом названии уже подчеркивается, что это фигура, у которой три угла. Следовательно, в многоугольнике их может быть много, т.е. больше, чем три. Например, изобразим пятиугольник (см. Рис. 2), т.е. фигуру с пятью углами.

Рис. 2. Пятиугольник. Выпуклый многоугольник

Определение. Многоугольник - фигура, состоящая из нескольких точек (больше двух) и соответствующего количества отрезков, которые их последовательно соединяют. Эти точки называются вершинами многоугольника, а отрезки - сторонами . При этом никакие две смежные стороны не лежат на одной прямой и никакие две несмежные стороны не пересекаются.

Определение. Правильный многоугольник - это выпуклый многоугольник, у которого все стороны и углы равны.

Любой многоугольник разделяет плоскость на две области: внутреннюю и внешнюю. Внутреннюю область также относят к многоугольнику .

Иными словами, например, когда говорят о пятиугольнике , имеют в виду и всю его внутреннюю область, и границу. А ко внутренней области относятся и все точки, которые лежат внутри многоугольника, т.е. точка тоже относится к пятиугольнику (см. Рис. 2).

Многоугольники еще иногда называют n-угольниками, чтобы подчеркнуть, что рассматривается общий случай наличия какого-то неизвестного количества углов (n штук).

Определение. Периметр многоугольника - сумма длин сторон многоугольника.

Теперь надо познакомиться с видами многоугольников. Они делятся на выпуклые и невыпуклые . Например, многоугольник, изображенный на Рис. 2, является выпуклым, а на Рис. 3 невыпуклым.

Рис. 3. Невыпуклый многоугольник

Определение 1. Многоугольник называется выпуклым , если при проведении прямой через любую из его сторон весь многоугольник лежит только по одну сторону от этой прямой. Невыпуклыми являются все остальные многоугольники .

Легко представить, что при продлении любой стороны пятиугольника на Рис. 2 он весь окажется по одну сторону от этой прямой, т.е. он выпуклый. А вот при проведении прямой через в четырехугольнике на Рис. 3 мы уже видим, что она разделяет его на две части, т.е. он невыпуклый.

Но существует и другое определение выпуклости многоугольника.

Определение 2. Многоугольник называется выпуклым , если при выборе любых двух его внутренних точек и при соединении их отрезком все точки отрезка являются также внутренними точками многоугольника.

Демонстрацию использования этого определения можно увидеть на примере построения отрезков на Рис. 2 и 3.

Определение. Диагональю многоугольника называется любой отрезок, соединяющий две не соседние его вершины.

Для описания свойств многоугольников существуют две важнейшие теоремы об их углах: теорема о сумме внутренних углов выпуклого многоугольника и теорема о сумме внешних углов выпуклого многоугольника . Рассмотрим их.

Теорема. О сумме внутренних углов выпуклого многоугольника (n -угольника).

Где - количество его углов (сторон).

Доказательство 1. Изобразим на Рис. 4 выпуклый n-угольник.

Рис. 4. Выпуклый n-угольник

Из вершины проведем все возможные диагонали. Они делят n-угольник на треугольника, т.к. каждая из сторон многоугольника образует треугольник, кроме сторон, прилежащих к вершине . Легко видеть по рисунку, что сумма углов всех этих треугольников как раз будет равна сумме внутренних углов n-угольника. Поскольку сумма углов любого треугольника - , то сумма внутренних углов n-угольника:

Что и требовалось доказать.

Доказательство 2. Возможно и другое доказательство этой теоремы. Изобразим аналогичный n-угольник на Рис. 5 и соединим любую его внутреннюю точку со всеми вершинами.

Рис. 5.

Мы получили разбиение n-угольника на n треугольников (сколько сторон, столько и треугольников). Сумма всех их углов равна сумме внутренних углов многоугольника и сумме углов при внутренней точке, а это угол . Имеем:

Что и требовалось доказать.

Доказано.

По доказанной теореме видно, что сумма углов n-угольника зависит от количества его сторон (от n). Например, в треугольнике , а сумма углов . В четырехугольнике , а сумма углов - и т.д.

Теорема. О сумме внешних углов выпуклого многоугольника (n -угольника).

Где - количество его углов (сторон), а , …, - внешние углы.

Доказательство. Изобразим выпуклый n-угольник на Рис. 6 и обозначим его внутренние и внешние углы.

Рис. 6. Выпуклый n-угольник с обозначенными внешними углами

Т.к. внешний угол связан со внутренним как смежные, то и аналогично для остальных внешних углов. Тогда:

В ходе преобразований мы воспользовались уже доказанной теоремой о сумме внутренних углов n-угольника .

Доказано.

Из доказанной теоремы следует интересный факт, что сумма внешних углов выпуклого n-угольника равна от количества его углов (сторон). Кстати, в отличие от суммы внутренних углов.

Список литературы

  1. Александров А.Д. и др. Геометрия, 8 класс. - М.: Просвещение, 2006.
  2. Бутузов В.Ф., Кадомцев С.Б., Прасолов В.В. Геометрия, 8 класс. - М.: Просвещение, 2011.
  3. Мерзляк А.Г., Полонский В.Б., Якир С.М. Геометрия, 8 класс. - М.: ВЕНТАНА-ГРАФ, 2009.
  1. Profmeter.com.ua ().
  2. Narod.ru ().
  3. Xvatit.com ().

Домашнее задание

 


Читайте:



Энциклопедия сказочных героев: "Красавица и Чудовище"

Энциклопедия сказочных героев:

Жил-был богатый купец, у которого было три дочери и три сына. Младшую из дочерей звали Красавица. Ее сестрицы не любили ее за то, что она была...

История Екатерины Второй (1885 год) Брикнер александр история екатерины второй

История Екатерины Второй (1885 год) Брикнер александр история екатерины второй

Брикнер, Александр Густавович. История Екатерины Второй [Текст] : сочинения А. Г. Брикнера, Профессора русской истории в Дерптском университете: в...

Презентация - династия романовых Почему рухнула империя романовых презентация

Презентация - династия романовых Почему рухнула империя романовых презентация

Cлайд 1 Cлайд 2 В 1894 году, сменив своего отца Александра III, на российский престол вступил Николай II. Ему суждено было стать последним...

Функция распределения случайной величины

Функция распределения случайной величины

ЗАКОН РАСПРЕДЕЛЕНИЯ И ХАРАКТЕРИСТИКИ СЛУЧАЙНЫХ ВЕЛИЧИН Случайные величины, их классификация и способы описания. Случайной называется...

feed-image RSS