Главная - Свияш Александр
Что относится к методам имитационного моделирования. Имитационные модели. Этапы разработки имитационных моделей. Основные понятия построения модели

Приведенный ниже пример может найти применение при решении большого класса задач. Например, проблемы управления человеческими и техническими ресурсами. Моделирование поможет любой коммерческой компании снизить расходы на материалы, кадры и оборудование.

Поиск оптимального количества сотрудников для предоставления клиентам требуемого уровня сервиса

На первом этапе устанавливается главный критерий уровня сервиса в банке – средний размер очереди. Далее выбираются соответствующие параметры системы для задания параметров модели: количество клиентов, интенсивность их прибытия, время на прием одного клиента и естественные отклонения от средних величин, которые периодически возникают, например, часы пик и сложные запросы клиентов.

Затем создается блок-схема, соответствующая структуре отделения банка и его бизнес-процессам. Модель учитывает только факторы, оказывающие влияние на анализируемую проблему. Например, наличие отделения обслуживания юридических лиц или кредитного отдела не влияет на обслуживание физических лиц, поскольку эти отделы физически и функционально отделены.


Наконец, после загрузки в модель входных данных, имитация запускается, и появляется возможность посмотреть работу отделения банка в динамике, что позволяет обработать и проанализировать результаты. Если средний размер очереди клиентов превысил установленный предел, то количество доступных сотрудников увеличивают, и эксперимент выполняется заново. Этот процесс может автоматически выполняться, пока не будет найдено оптимальное решение.

Слово имитация (от лат.-подражание) подразумевает воспроизведение каким-либо иным образом явлений, событий, действий объектов и т. д. Термин «имитация» - синоним «модели» (от лат. - мера, образец) означает любой материальный или нематериальный образ (изображение, схема, воспроизведение, материальное воплощение, представитель, объекты организационно-технологической задачи и т.п.).

Словосочетание «имитационная модель» некорректно, т.к., по сути, это тавтология, однако в середине XX века оно было введено в практику физического и математического моделирования.

Имитационные модели, являющиеся особым классом математических моделей, отличаются от аналитических тем, что использование ЭВМ в процессе их реализации играет определяющую роль. Имитационные модели не накладывают жестких ограничений на используемые исходные данные, которыми выступают интересующие объекты исследования, а позволяют в процессе работы использовать всю собранную информацию вне зависимости от ее формы представления и степени ее формализации.

Имитационное моделирование - метод исследования, который основан на замене изучаемой системы - имитирующей. Именно с имитирующей системой проводят эксперименты (на реальном объекте эксперименты не проводятся, чтобы не испортить его в случае нерентабельности решения, и дабы сократить временные затраты) и в результате получают информацию об изучаемой системе, желаемом объекте. Метод позволяет имитировать, например, работу моделей бизнес-процессов так, как они происходили бы в действительности, с учетом графиков рабочего времени и занятости временных ресурсов и наличия необходимого количества материальных ресурсов. В результате, можно оценить реальное время выполнения как одного процесса, так и заданного их множества, а так же просчитать ошибки и увидеть возможные риски при решении данным способом той или иной организационно-технической задачи.

Имитационная модель - математическое описание объекта с применением логики, которое может быть использовано для проведения экспериментов на компьютере в целях проектирования, анализа и оценки функционирования объекта, неподдающегося наблюдению в настоящее время или требующего больших затрат такого ресурса, как время.

Структура имитационного моделирования является последовательно-циклической. Последовательность определяется процессом имитационного моделирования, который можно разбить на ряд последовательных этапов, выполнение которых осуществляется от предыдущего к последующему. Цикличность проявляется в необходимости возвращения к предыдущим этапам и повторении уже однажды пройденного пути с некоторыми измененными в силу необходимости данными и параметрами модели, поставленной задачи.

Этапы имитационного моделирования:

Первый этап такой же, как и в любом исследовании. Он необходим для того, чтобы была оценена потребность изучения объекта или проблемы, возможность и способы решения поставленных задач, ожидаемые результаты, прогнозированные затраты и прибыль. Этот этап важен для практического применения метода моделирования. Часто к этому этапу возвращаются после окончания исследования модели и обработки результатов для изменения постановки задачи, а иногда и модернизации цели моделирования.

Второй этап включает в себя формализацию описания моделируемого объекта на основе выбранной теоретической базы, то есть на основе каких-либо выбранных показателей, характеризующих объект и его окружение. На этом этапе, на естественном языке дается описание исследуемого объекта, взаимодействия между элементами объекта и объекта с внешней средой. На основе описания объекта выбирается концепция его формального определения, и то, как он будет отображаться в имитационном моделировании. Таким образом, в конце данного этапа словесное описание исследуемой системы превращается в абстрактную математическую структуру. Заканчивается второй этап проверкой соответствия имитационной модели с реальной системы. Если этого нет, то следует провести коррекцию в определении теоретической базы модели.

Третий этап - проведение исследования на разработанной модели путем «прогона» ее на ЭВМ. Перед началом исследования полезно составить такую последовательность модели, которая позволила бы получить необходимый объем информации при данном составе и достоверности первоначальных данных. Далее на основе разработанного плана эксперимента осуществляют пробы имитационной модели на ЭВМ, т.е. первые «прогоны» этой модели. В конце этого этапа осуществляется обработка результатов с целью представления их в виде, наиболее удобном для анализа.

Четвертый этап приводит к анализу результатов исследования. На этом этапе определяются свойства реальной системы, которые наиболее важны для исследователя. На основе результатов подготавливаются окончательные выводы по проведенному моделированию, по работе программы, по заданному объекту, а также по оптимальности решения, заложенных в программе.

Пятый этап - это заключительный этап. Здесь формулируются окончательные выводы по заданному объекту, заложенного в имитационной модели, и разрабатываются рекомендации по использованию результатов моделирования для достижения поставленных предприятием целей. Часто на основе этих выводов возвращаются к началу процесса моделирования для необходимых изменений в теоретической и практической части модели и повторным исследованиям с измененной моделью для проверки наиболее оптимального решения. В результате нескольких подобных циклов получают имитационную модель, наилучшим образом удовлетворяющую поставленным целям и приводящая к полноценному описанию решаемой задачи и к ответу на нее.

Имитационные модели позволяют проверить, правильность понимания процессов в исследуемом объекте, допустимые риски и ошибки. Знание последних и дает возможность строить простые модели сложных в реальности явлений.

Имитационное моделирование подразделяется на несколько видов имитационного моделирования:

  • - агентное моделирование
  • - дискретно-событийное моделирование
  • - системная динамика
  • - статическое имитационное моделирование.

Рассмотрим каждый вид подробнее:

Агентное моделирование (1990-е - 2000-е гг.) - направление в имитационном моделировании, которое используется для исследования децентрализованных (разобщенных) систем, динамика функционирования которых определяется не глобальными правилами и законами узкой направленности, а наоборот, когда эти глобальные правила и законы являются результатом индивидуальной активности членов группы. Цель агентных моделей -- получить представление об глобальных правилах, общем поведении системы, исходя из предположений об индивидуальном, частном поведении ее отдельных активных объектов и их взаимодействии в системе. Агент -- сущность, обладающая активностью, автономным поведением, которая может принимать решения в соответствии с определенном набором правил, взаимодействовать с окружающей средой, а также самостоятельно изменяться.

Дискретно-событийное моделирование -- подход к моделированию, предлагающий абстрагироваться от непрерывной природы событий и рассматривать только основные события моделируемой системы («ожидание», «обработка заказа», «движение с грузом», «разгрузка» и другие). Дискретно-событийное моделирование наиболее развито и имеет огромную сферу приложений - от систем массового обслуживания до транспортных и производственных систем. Этот вид моделирования наиболее подходит для моделирования производственных процессов, например, в строительстве. Он был основан Джеффри Гордоном в 60-х гг. XX века.

Системная динамика -- парадигма моделирования, где для исследуемой системы строятся графические диаграммы причинных связей и глобальных влияний одних параметров на другие, изменяющиеся во времени, а затем созданная на основе этих диаграмм модель, которая в последствие имитируется на компьютере. Такой вид моделирования качественней других парадигм помогает понять суть происходящего выявления причинно-следственных связей между объектами и явлениями. С помощью системной динамики строят модели бизнес-процессов, развития города, строительства всевозможных объектов, модели производства. Метод был основан Джеем Форрестером в 1950 годах.

Статистическое имитационное моделирование - это моделирование, позволяющее воспроизводить на ЭВМ функционирование сложных хаотичных процессов.

При исследовании сложных систем, более всего подверженных случайным возмущениям, используются вероятностные аналитические модели и вероятностные имитационные модели. В вероятностном имитационном моделировании оперируют с конкретными случайными числовыми значениями параметров процесса или системы. При этом результаты, полученные при воспроизведении на имитационной модели рассматриваемого объекта, процесса, являются случайными реализациями. Поэтому для нахождения объективных и устойчивых характеристик процесса требуется его многократное воспроизведение, с последующей статистической обработкой полученных в результате исследования данных. Именно поэтому исследование сложных процессов и систем, подверженных случайным возмущениям, которыми и являются задачи организационно-технологического характера, с помощью имитационного моделирования принято называть статистическим моделированием. При реализации на ПК статистического имитационного моделирования возникает задача получения на ПК случайных числовых последовательностей с заданными вероятностными характеристиками. Численный метод, решающий поставленную задачу генерирования последовательности случайных чисел с заданными законами распределения ресурсов, получил название "метод статистических испытаний" или "метод Монте-Карло".

Таким образом, метод имитационного моделирования при исследовании сложной проблемной ситуации, сложной организационно-технологической задачи предполагает выполнение всего пяти этапов, основанных на составлении математической модели, ее проверки и перепроверки ее работы с новыми данными.

Имитационные технологии опираются на построение различных примеров реальных систем, отвечающих профессиональному контексту определённой ситуации. Составляются имитационные модели, соответствующие требованиям данного момента, в работу с которыми погружается обучаемый субъект. Существующему в методиках имитационному и имитационно-игровому моделированию сопутствует воспроизведение достаточно адекватных процессов, происходящих в реальности. Таким образом, обучение даёт возможность формировать реальный профессиональный опыт, несмотря на квази-профессиональную деятельность.

Роли

В процессе обучения предполагаются игровые процедуры, которые предлагают выстроенные имитационные модели, значит, предусматривается и распределение ролей: обучающиеся общаются друг с другом и с преподавателем, имитируя профессиональную деятельность. Поэтому имитационные технологии подразделяются на две части - игровые и неигровые, а помогает определению вида анализ предложенной ситуации. Для этого необходимо уточнить систему внешних условий, которые побуждают начать активные действия. То есть все проблемы, явления, взаимосвязанные факты, которые характеризуют ситуацию, имитационные модели должны вместить.

Определённое событие или конкретный период деятельности организации требует от руководителя адекватных распоряжений, решений и поступков. Методика анализа изучения конкретных ситуаций - детальное и глубокое исследование реальной обстановки либо созданной искусственно, выявление характерных свойств. Это способствует развитию обучаемых в поиске системного подхода к решению проблемы, выявлению вариантов ошибочных решений, разбору критериев для оптимальных решений. Так устанавливаются профессиональные деловые контакты, решения принимаются коллективно, устраняются конфликты.

Ситуации

Различаются ситуации по четырём видам: сначала рассматривается ситуация проблемы, где обучаемым предстоит найти причины возникновения, поставить и разрешить проблему, затем ситуация подлежит оценке по принятым решениям. После этого строится ситуация, иллюстрирующая примерами все поставленные темы данного курса, причём за основу берутся только что решённые проблемы, а завершает тему ситуация-упражнение, где имитационные модели решают нетрудные задачи по методу аналогии, - это так называемые учебные ситуации.

Конкретные виды ситуаций бывают различными: это и классические, и живые, ситуация-инцидент, ситуация с разбором деловой корреспонденции, а также действия по инструкции. Выбор определяют многие факторы: цели изучения, уровень подготовки, наличие технических средств и иллюстрационного материала, - всё зависит от индивидуального стиля преподавателя, творчество которого не ограничивается жёсткой регламентацией ни по выбору разновидностей, ни по способам анализа. Вот первые этапы разработки имитационных моделей.

Практические задания

На практике лучше всего воплощаются идеи контекстного подхода, потому что состоят из конкретных и реальных жизненных ситуаций: случай, история, которые содержит имитационная модель, пример описания событий, имевших место или вполне возможных, закончившихся ошибками в решениях производственных проблем. Задача состоит в выявлении и анализе этих ошибок при применении идеи и концепции данного курса.

Такого плана профессиональное обучение вполне реалистично и действенно по сравнению с постановкой отдельных вопросов, которые рассматриваются чисто теоретически. Ориентация ситуационного обучения такова, что умения и знания преподаются не как предмет, а как средство для решения всевозможных задач, которые возникают в деятельности специалиста. Учебные ситуации строятся на реальных профессиональных производственных фрагментах с учетом всех межличностных отношений, что крайне важно для успешной работы предприятия. Обучаемые получают контур и контекст будущей профессиональной деятельности.

Выбор ситуаций

Это одна из самых трудных преподавательских задач. Примерная учебная ситуация обычно отвечает следующим требованиям:

  1. Сценарий основан на реалиях либо взят из жизни. Это не означает, что необходимо подавать производственный фрагмент с многочисленными деталями и технологическими тонкостями, которые будут отвлекать студента от решения основной задачи. Производственный жаргон в данном случае тоже неуместен.
  2. Учебная ситуация не должна содержать больше пяти-семи моментов, которые комментируются студентами с использованием терминов в русле изучаемой концепции. Имитационная модель, пример которой трудноразрешим, вряд ли быстро научит студентов.
  3. Но учебная ситуация должна быть лишена и примитива: кроме пяти-семи моментов изучаемой проблемы обязательно должны присутствовать две-три связки в тексте. Обычно проблемы не раскладываются в жизни по отдельным полочкам для последовательного разрешения. Проблемы на производстве, обычно, взаимосвязаны с социальными или психологическими неувязками. Особенно важно в обучении применение идей курса.

Текст учебной ситуации

Например, - менеджер по продажам в фирме "Цветок лотоса", специализирующейся на средствах гигиены, косметике и парфюмерии. Она пришла на это место в связи с повышением полгода назад. Беседа с главным менеджером по итогам её работы состоится через десять дней.

До этого Ирина два года преуспевала в отдельной секции фирмы, допустим, продавала средства гигиены, и ей это чрезвычайно нравилось. Её уважали, она была популярна среди продавцов и приобрела много постоянных клиентов.

Развитие ситуации

Повышению она, естественно, обрадовалась и начала с энтузиазмом работать в новой должности. Однако дела почему-то хорошо не пошли. Она не успевала работать в офисе, потому что почти всё время находилась в зале и следила за действиями продавцов. Приходилось даже брать работу на дом. И всё равно она ничего не успевала: просьба начальства подготовить идеи к выставке-продаже была выполнена в последний день, потому что предварительно ничего интересного не придумалось, творчество - не такое простое дело. Заболевшая машинистка не смогла перепечатать бумаги с идеями Ирины. В итоге к намеченному начальством сроку Ирина задание не выполнила. Вот в этот момент более всего ей помогли бы имитационные модели обучения.

После этого всё пошло не так. Потратив время на беседу с постоянной клиенткой, Ирина не обдумала речь, когда её коллега торжественно получал сертификат, даже опоздала на церемонию. Затем несколько раз её подчинённые покидали рабочие места, её не предупредив. Отдел кадров неоднократно напоминал ей о необходимости составления программы обучения по пользованию лечебной косметикой, но связаться с преподавателем из мединститута у Ирины никак не получалось. Она даже младших продавцов всегда опаздывала представлять на должность старших. И ещё Ирина не приготовила квартальный отчёт с прогнозом ассортимента. И даже не ответила на несколько писем клиентов, желающих получить товар почтой. И как вишенка на торте - недавняя ссора с одним из ранее очень уважаемых ею продавцов по поводу ценников. Оказывается не так просто быть хорошим менеджером.

Анализ ситуации

Имитационная модель - это прежде всего прочтение ситуации. Здесь складывается следующая картина из шести пунктов с подпунктами.

  1. На новой работе произошли изменения. Каковы их сдерживающие и побуждающие силы?
  2. До изменений - наличие чувства собственного достоинства и знание механизма продаж.
  3. Мотивация в желании преуспеть, но и сохранить способности к продажам - ролевой конфликт.
  4. Стиль менеджмента - полная неспособность отдать часть полномочий подчинённым. Столкновения с подчинёнными не избежать.
  5. В новой роли: не определила специфику должности, размер нагрузки, не решила простую проблему с перепечаткой, манкирует планированием и контролем, допускает неявку на работу подчинённых, срывает план обучения персонала, не умеет организовать своё время и расставить приоритеты, теряет креативность - новые идеи отсутствуют.
  6. Стиль управления вверенным штатом: допускает вертикальный конфликт, вмешивается в дела подчинённых, не уверена в себе, руководит без помощи менеджмента.

Выявление проблем

Структура имитационных моделей предполагает вторым шагом выявить наметившиеся проблемы для их последовательного решения. Здесь нужно следовать по этим же пунктам, учитывая произведённый анализ, но рассматривая ситуацию с другой целью.

  1. Изменения: существуют ли способы управления изменениями и какие, каким образом уменьшить сопротивление произошедшим изменениям.
  2. Стили руководства: почему выбранный Ириной стиль безуспешен, и в пользу какого лучше от него отказаться.
  3. Мотивация: что говорит теория менеджмента относительно стимулирования Ирины и продавцов.
  4. Специфика рабочих целей: известны ли Ирине все подробности относительно новой работы, каковы были цели и как надо было бы их достичь.
  5. Планирование и контроль: планировала ли Ирина свои действия как менеджер, контролировались ли они.
  6. Конфликт: в чём повод и проблема произошедшего конфликта и как можно было с этим справиться.

Тематические связки

Использование имитационных моделей помогает выстраивать ситуацию от зарождения (побуждений), обнаруживая мотивы её начала, до перехода в новое качество. Каким оно будет, зависит от того, как произведён анализ и какие сделаны выводы. Ни одна ситуация не обходится без связующих тем. Чаще всего имитационные модели воспроизводят реальность не во всех аспектах, но несколько таких связок должны присутствовать в игре обязательно. Здесь они следующие.

  1. Ирина не увидела различий в работе менеджера и продавца.
  2. Ирина была плохо подготовлена к исполнению новой должности.
  3. Ирина не имеет фундаментальных знаний о менеджменте.

Разработка связующих мотивов

Что возможно и что обязательно сделать относительно связующих тем?

  1. Прежде всего необходима передача информации. Начальство Ирины обязано предъявить ей конкретные требования к работе сразу после назначения. Ирина должна поставить подчинённых в известность относительно стиля своего управления на работе.
  2. Во-вторых, необходимо обучение Ирины основам менеджмента, её подчинённых - методам продаж, и, конечно, Ирина и подчинённые должны пройти обучение относительно межличностного взаимодействия.
  3. В-третьих, необходимо чёткое планирование функциональных обязанностей Ирины как менеджера и деятельности всего отдела в целом.
  4. В-четвёртых, должно быть правильное управление персоналом: Ирине необходима помощь в определении цели и приоритета как ежемоментно, так и долгосрочно, то есть отделу кадров есть смысл запланировать повышение квалификации сотрудников, в которых фирма заинтересована.

Вся эта тема напрямую связана только с передачей информации.

Когда игра подходит к этапу подведения итогов и выводов, становится понятно, что такое имитационные модели и чем они полезны. Выводы получаются очень точные и конкретные практически у всех, потому что ситуацию удалось разобрать до малейших деталей.

  • Во-первых, менеджер должен согласовать специфику работы с начальством и донести результаты подчинённым.
  • Во-вторых, все приоритеты и цели должны быть понятны менеджеру и тоже объяснены остальному персоналу.

Ирине необходимо освоить технику менеджмента в управлении собственным временем, в контроле и планировании, в управлении людьми и любым конфликтом, в циркуляции новой информации среди коллектива и в его развитии.

Ирине нужно подробно узнать в отделе кадров о процедурах обучения, а также о повышении квалификации сотрудников, чтобы как можно более правильно их применить. Ей предстоит повышать свой профессиональный уровень самостоятельно, а в перспективе пройти учёбу. Этими рекомендациями можно человека неподготовленного испугать, поэтому нужно сразу разбить их на три раздела: немедленного выполнения, рекомендации средней срочности, и последний пункт - явно долгосрочный. Ирине и её начальству есть смысл обсудить причины неудач и сделать всё, чтобы они не повторялись.

Разобрав, таким образом, искусственно выстроенную ситуацию, каждый студент поймёт, что такое имитационные модели.

Модели экономического развития

Социально-экономическое развитие имеет отличающиеся от других имитационные модели. Это потребовало отдельного названия, чтобы конкретно знать сферу применения того или другого ситуационного искусственного построения. Динамические имитационные модели предназначены именно для прогнозирования работы экономических систем. В названии подчёркивается, что динамика является самой главной характеристикой таких построений, и в их основе лежат принципы системной динамики.

Этапы построения имеют следующую последовательность действий: сначала выстраивается схема когнитивной структуризации, затем подбираются статистические данные, и уточняется схема. Следующий шаг - формируются где описываются когнитивные связи, затем ИДМ компонуется в целом. Происходит отладка и верификация модели, и, наконец, выполняются многовариантные расчёты, в том числе и прогнозные.

Метод сценариев

Сценарный анализ, что означает имитационная модель определённого проекта, нужен для того, чтобы просчитать опасности на пути становления проекта и пути их преодоления. Риск, грозящий инвестициям, может выражаться в отклонении денежного потока, предназначенного данному проекту, вопреки ожиданиям, и чем отклонение больше, тем больше увеличивается риск. Каждый проект демонстрирует возможный диапазон проектных результатов, поэтому, давая им вероятностную оценку, можно оценивать потоки денег, принимая во внимание экспертные оценки вероятностных генераций всех этих потоков или величину отклонений всех компонентов потока от значений ожидания.

Хорош тем, что на основе таких экспертных оценок можно построить как минимум три возможные ситуации развития: пессимистическую, наиболее реальную (вероятную) и оптимистическую. Имитационные модели - это Отличие от реальности здесь только одно - производит действие не сама система, а её модель. Имитационные модели систем выручают в случаях, когда проведение реальных экспериментов как минимум неразумно, а по максимуму - затратно и опасно. Имитация - способ исследования систем без малейшей степени риска. Практически невыполнимо, например, без имитаций оценить риск инвестиционных проектов, где использованы только прогнозные данные о затратах, объёмах продаж, ценах и других составляющих, определяющих риски.

Финансовый анализ

Модели, используемые для решения многих задач, стоящих перед финансовым анализом, содержат случайные величины, не поддающиеся управлению лицам, которые принимают решения. Это стохастические имитационные модели. Имитация позволяет вывести возможные результаты, которым служат основанием вероятностные распределения случайных величин. Также стохастическая имитация часто называется методом Монте-Карло.

Как моделируются риски инвестиционных проектов? Проводится серия многочисленных экспериментов, которые чисто эмпирически оценивают степень влияния разнообразных факторов (то есть исходных величин) на результаты, целиком и полностью зависящие от них. Проведение имитационного эксперимента обычно разбивают на определённые этапы.

Установкой взаимосвязей между показателями исходными и конечными в виде математического неравенства или уравнения делается первый шаг по пути эксперимента. Затем нужно задать машине законы, распределяющие вероятности для ключевых параметров. Далее проводится компьютерная имитация всех значений главных параметров модели, рассчитываются характеристики распределений показателей исходных и конечных. Наконец, проводится сам анализ тех результатов, что выдал компьютер, и принимается решение.

Определим в общем виде как экспериментальный метод исследования реальной системы по ее имитационной модели, который сочетает особенности эксперименталь­ного подхода и специфические условия использования вычислительной техники.

В этом определении подчеркивается, что имитационное моделиро­вание является машинным методом моделирования благодаря развитию информационных технологий, что привело к появлению этого вида компьютерного моделирования. В определении также акцентируется внимание на экспериментальной природе имитации, применяется имитационный метод исследования (осуществляется эксперимент с моделью). В имитационном моделировании важную роль играет не только проведение, но и планирование эксперимента на модели. Однако это определение не проясняет, что собой представляет сама имитационная модель. Ответим на вопрос, в чем же состоит сущность имитационного моделирования?

  • реальная система;
  • ЭВМ, на которой осуществляется имитация – направленный вычислительный эксперимент.

логико - или логико-математических моделей, описываемых изучаемый процесс.

Выше, реальная система определялась как совокупность взаимодействующих элементов, функционирующих во времени.

< A , S , T > , где

А

S

Т

Особенностью имитационного моделирования является то, что имитационная модель позволяет воспроизводить моделируемые объекты:

  • с сохранением поведенческих свойств (последовательности чередования во времени событий, происходящих в системе), т.е. динамики взаимодействий.

:

  • статическое описание системы , которое по-существу является описанием ее структуры. При разработке имитационной модели необходимо применять структурный анализ моделируемых процессов.
  • функциональной модели

.

состояний набором переменных состояний , каждая комбинация которых описывает конкретное состояние. Следовательно, путем изменения значений этих переменных можно имитировать переход системы из одного состояния в другое. Таким образом, имитационное моделирование – это представле­ние динамического поведения системы посредством продвижения ее от одного состояния к другому в соответствии с определенными правилами. Эти изменения состояний могут происходить либо непрерывно, либо в дискретные моменты времени. Имитационное моделирование есть динамическое отражение изменений состояния системы с течением времени.

При имитационном моделировании логическая структура реальной системы отображается в модели, а также имитируется динамика взаимодействий подсистем в моделируемой системе.

Понятие о модельном времени

t 0 , которую называют

t 0 :

  • пошаговый
  • по-событийный

В случае пошагового метода (принцип t ).

  • непрерывные;
  • дискретные;
  • непрерывно-дискретные.

В

В

непрерывно-дискретные модели

Моделирующий алгоритм

Имитационный характер исследования предполагает наличие

алгоритмической , так и неалгоритмической.

моделирующий алгоритм

Имита­ционная модель – это программная реализация моделирующего алгоритма. Она составляется с применением средств автоматизации моделирования. Подробнее технология имитационного моделирования, инструментальные средства моделирования, языки и системы моделиро­вания, с помощью которых реализуются имитационные модели, будут рассмотрены ниже.

Общая технологическая схема имитационного моделирования

В общем виде технологическая схема имитационного моделирования представлена на рис.2.5.

Рис. 2.5. Технологическая схема имитационного моделирования

  1. реальная система;
  2. построение логико-математической модели;
  3. разработка моделирующего алгоритма;
  4. построение имитационной (машинной) модели;
  5. планирование и проведение имитационных экспериментов;
  6. обработка и анализ результатов;
  7. выводы о поведении реальной системы (принятие решений)

Имитационная модель содержит элементы непрерывного и дискрет­ного действия, поэтому применяется для исследования динамических систем, когда требуется анализ узких мест , исследование динамики функционирования,

Имитационное моделирование – эффективный аппарат исследова­ния стохастических систем, в условиях неопределенности, .

Что будет, если?

В имитационной модели может быть обеспечен различный, в том числе и высокий, уровень детализации моделируемых процессов. При этом модель создается поэтапно, эволюционно .

Определимметод имитационного моделирования в общем виде какэкспериментальный метод исследования реальной системы по ее имитационной модели, который сочетает особенности эксперименталь ного подхода и специфические условия использования вычислительной техники.

В этом определении подчеркивается, что имитационное моделиро вание является машинным методом моделирования благодаря развитию информационных технологий, что привело к появлению этого вида компьютерного моделирования. В определении также акцентируется внимание на экспериментальной природе имитации, применяется имитационный метод исследования (осуществляется эксперимент с моделью). В имитационном моделировании важную роль играет не только проведение, но и планирование эксперимента на модели. Однако это определение не проясняет, что собой представляет сама имитационная модель. Ответим на вопрос, в чем же состоит сущность имитационного моделирования?

В процессе имитационного моделирования (рис. 2.1) исследователь имеет дело с четырьмя основными элементами:

  • реальная система;
  • логико-математическая модель моделируемого объекта;
  • имитационная (машинная) модель;
  • ЭВМ,накоторойосуществляетсяимитация–направленный

вычислительный эксперимент.

Исследователь изучает реальную систему, разрабатывает логико-математическую модель реальной системы.

Выше,реальнаясистемаопределяласькаксовокупность взаимодействующих элементов, функционирующих во времени.

Составной характер сложной системы описывает представление ее модели в виде трех множеств:

< A , S , T > , где

А – множество элементов (в их число включается и внешняя среда);

S – множество допустимых связей между элементами (структура модели);

Т – множество рассматриваемых моментов времени.

Особенностью имитационного моделирования является то, что имитационная модель позволяет воспроизводить моделируемые объекты:

  • с сохранением их логической структуры;
  • с сохранением поведенческих свойств(последовательности чередования во времени событий, происходящих в системе), т.е. динамики взаимодействий.

При имитационном моделировании структура моделируемой системы адекватно отображается в модели, а процессы ее функционирования проигрываются (имитируются) на построенной модели. Поэтому построение имитационной модели заключается в описании структуры и процессов функционирования моделируемого объекта или системы.В описании имитационной модели выделяют две составляющие :

  • статическое описание системы , которое по-существу является описанием ее структуры. При разработке имитационной модели необходимоприменятьструктурныйанализмоделируемых процессов.
  • динамическое описание системы , или описание динамики взаимодействий ее элементов. При его составлении фактически требуется построениефункциональной модели моделируемых динамических процессов.

Идея метода, с точки зрения его программной реализации, состоит в следующем. Что, если элементам системы поставить в соответствие некоторые программные компоненты, а состояния этих элементов описывать с помощью переменных состояния. Элементы, по определению, взаимодействуют (или обмениваются информацией), значит, может быть реализован алгоритм функционирования отдельных элементов, т.е., моделирующий алгоритм. Кроме того, элементы существуют во времени, значит надо задать алгоритм изменения переменных состояний. Динамика в имитационных моделях реализуется с помощьюмеханизма продвижения модельного времени .

Отличительной особенностью метода имитационного моделирования является возможность описания и воспроизведения взаимодействия между различными элементами системы. Таким образом, чтобы составить имитационную модель, надо:

  • представить реальную систему (процесс), как совокупность взаимодействующих элементов;
  • алгоритмически описать функционирование отдельных элементов;
  • описать процесс взаимодействия различных элементов между собой и с внешней средой.

Ключевым моментом в имитационном моделировании является выделение и описаниесостояний системы. Система характеризуетсянабором переменных состояний , каждая комбинация которых описывает конкретное состояние. Следовательно, путем изменения значений этих переменных можно имитировать переход системы из одного состояния в другое. Таким образом, имитационное моделирование – это представле ниединамического поведения системы посредством продвижения ее от одного состояния к другому в соответствии с определенными правилами. Эти изменения состояний могут происходить либо непрерывно, либо в дискретные моменты времени. Имитационное моделированиеесть динамическое отражение изменений состояния системы с течением времени.

При имитационном моделировании логическая структура реальной системы отображается в модели, а такжеимитируетсядинамика взаимодействий подсистем в моделируемой системе.

Понятие о модельном времени. Дискретные и непрерывные имитационные модели

Для описания динамики моделируемых процессов в имитационном моделировании реализованмеханизм задания модельного времени. Этот механизм встроен в управляющие программы системы моделирования.

Если бы на ЭВМ имитировалось поведение одной компоненты системы, то выполнение действий в имитационной модели можно было бы осуществить последовательно, по пересчету временной координаты.

Чтобы обеспечить имитацию параллельных событий реальной системы вводят некоторую глобальную переменную (обеспечивающую синхронизацию всех событий в системе)t 0 , которую называютмодельным (или системным) временем.

Существуют два основных способа измененияt 0 :

  • пошаговый (применяются фиксированные интервалы изменения модельного времени);
  • по-событийный (применяются переменные интервалы изменения модельного времени, при этом величина шага измеряется интервалом до следующего события).

В случаепошагового метода продвижение времени происходит с минимально возможной постоянной длиной шага(принцип t ). Эти алгоритмы не очень эффективны с точки зрения использования машинного времени на их реализацию.

Способ фиксированного шага применяется в случаях:

  • если закон изменения от времени описывается интегро-дифференциальными уравнениями. Характерный пример: решение интегро-дифференциальных уравнений численным методом. В подобных методах шаг моделирования равен шагу интегрирования. Динамика модели является дискретным приближением реальных непрерывных процессов;
  • когда события распределены равномерно и можно подобрать шаг изменения временной координаты;
  • когда сложно предсказать появление определенных событий;
  • когда событий очень много и они появляются группами.

В остальных случаях применяется по-событийный метод, например, когда события распределены неравномерно на временной оси и появляются через значительные временные интервалы.

По-событийный метод (принцип “особых состояний”). В нем координаты времени меняются тогда, когда изменяется состояние системы. В по-событийных методах длина шага временного сдвига максимально возможная. Модельное время с текущего момента изменяется до ближайшего момента наступления следующего события. Применение по-событийного метода предпочтительнее в том случае, если частота наступления событий невелика. Тогда большая длина шага позволит ускорить ход модельного времени. На практике по-событийный метод получил наибольшее распространение.

Таким образом, вследствие последовательного характера обработки информации в ЭВМ, параллельные процессы, происходящие в модели, преобразуются с помощью рассмотренного механизма в последовательные. Такой способ представления носит название квазипараллельного процесса.

Простейшая классификация на основные виды имитационных моделей связана с применением двух этих способов продвижения модельного времени. Различают имитационные модели:

  • непрерывные;
  • дискретные;
  • непрерывно-дискретные.

Внепрерывных имитационных моделях переменные изменяются непрерывно, состояние моделируемой системы меняется как непрерывная функция времени, и, как правило, это изменение описывается системами дифференциальных уравнений. Соответственно продвижение модельного времени зависит от численных методов решения дифференциальных уравнений.

Вдискретных имитационных моделях переменные изменяются дискретно в определенные моменты имитационного времени (наступления событий). Динамика дискретных моделей представляет собой процесс перехода от момента наступления очередного события к моменту наступления следующего события.

Поскольку в реальных системах непрерывные и дискретные процессы часто невозможно разделить, были разработанынепрерывно-дискретные модели , в которых совмещаются механизмы продвижения времени, характерные для этих двух процессов.

Моделирующий алгоритм. Имитационная модель

Имитационный характер исследования предполагает наличиелогико, или логико-математических моделей, описываемых изучаемый процесс (систему).

Логико-математическая модель сложной системы может быть какалгоритмической , так инеалгоритмической.

Чтобы быть машинно-реализуемой, на основе логико-математической модели сложной системы строитсямоделирующий алгоритм , который описывает структуру и логику взаимодействия элементов в системе.

Имита ционная модель – это программная реализация моделирующего алгоритма. Она составляется с применением средств автоматизации моделирования. Подробнее технология имитационного моделирования, инструментальные средства моделирования, языки и системы моделиро вания, с помощью которых реализуются имитационные модели, будут рассмотрены ниже.

Возможности метода имитационного моделирования

Метод имитационного моделирования позволяет решать задачи высокой сложности, обеспечивает имитацию сложных и многообразных процессов, с большим количеством элементов. Отдельные функциональные зависимости в таких моделях могут описываться громоздкими математическими соотношениями. Поэтому имитационное моделирование эффективно используется в задачах исследования систем со сложной структурой с целью решения конкретных проблем.

Имитационная модель содержит элементы непрерывного и дискрет ного действия, поэтому применяется для исследования динамических систем, когда требуетсяанализ узких мест , исследованиединамики функционирования, когда желательно наблюдать на имитационной модели ход процесса в течение определенного времени.

Имитационное моделирование – эффективный аппарат исследова ниястохастических систем, когда исследуемая система может быть подвержена влиянию многочисленных случайных факторов сложной природы. Имеется возможность проводить исследованиев условиях неопределенности, при неполных и неточных данных.

Имитационное моделирование является важным фактором всистемах поддержки принятия решений , т.к. позволяет исследовать большое число альтернатив (вариантов решений), проигрывать различные сценарии при любых входных данных. Главное преимущество имитационного моделирования состоит в том, что исследователь для проверки новых стратегий и принятия решений, при изучении возможных ситуаций, всегда может получить ответ на вопрос “Что будет, если? ...”. Имитационная модель позволяет прогнозировать, когда речь идет о проектируемой системе или исследуются процессы развития (т.е. в тех случаях, когда реальной системы еще не существует).

В имитационной модели может быть обеспечен различный, в том числе и высокий,уровень детализациимоделируемых процессов. При этом модель создается поэтапно, эволюционно.

Моделью объекта называется любой другой объект, отдельные свойства которого полностью или частично совпадают со свойствами исходного.

Следует ясно понимать, что исчерпывающе полной модель быть не может. Она всегда ограничена и должна лишь соответствовать целям моделирования, отражая ровно столько свойств исходного объекта и в такой полноте, сколько необходимо для конкретного исследования.

Исходный объект может быть либо реальным , либо воображаемым . C воображаемыми объектами в инженерной практике мы имеем дело на ранних этапах проектирования технических систем. Модели еще не воплощенных в реальные разработки объектов называются предвосхищающими.

Цели моделирования

Модель создается ради исследований, которые на реальном объекте проводить либо невозможно, либо дорого, либо просто неудобно. Можно выделить несколько целей, ради которых создаются модели и ряд основных типов исследований:

  1. Модель как средство осмысления помогает выявить:
  • взаимозависимости переменных;
  • характер их изменения во времени;
  • существующие закономерности.

При составлении модели становится более понятной структура исследуемого объекта, вскрываются важные причинно-следственные связи. В процессе моделирования постепенно происходит разделение свойств исходного объекта на существенные и второстепенные с точки зрения сформулированных требований к модели. Мы пытаемся найти в исходном объекте только те черты, которые имеют непосредственное отношение к интересующей нас стороне его функционирования. В определенном смысле вся научная деятельность сводится к построению и исследованию моделей природных явлений.

  1. Модель как средство прогнозирования позволяет научиться предсказывать поведение и управлять объектом, испытывая различные варианты управления на модели. Экспериментировать с реальным объектом часто, в лучшем случае, бывает неудобно, а иногда и просто опасно или вообще невозможно в силу ряда причин: большой продолжительности эксперимента, риска повредить или уничтожить объект, отсутствия реального объекта в случае, когда он еще только проектируется.
  2. Построенные модели могут использоваться для нахождения оптимальных соотношений параметров , исследования особых (критических) режимов работы.
  3. Модель также может в некоторых случаях заменять исходный объект при обучении , например использоваться в качестве тренажера при подготовке персонала к последующей работе в реальной обстановке, или выступать в качестве исследуемого объекта в виртуальной лаборатории. Модели, реализованные в виде исполняемых модулей, применяются и как имитаторы объектов управления при стендовых испытаниях систем управления, и, на ранних стадиях проектирования, заменяют сами будущие аппаратно реализуемые системы управления.

Имитационное моделирование

В русском языке прилагательное «имитационный» часто используют как синоним прилагательных «сходный», «похожий». Среди словосочетаний «математическая модель», «аналоговая модель», «статистическая модель», пара – «имитационная модель», появившаяся в русском языке, наверное в результате неточности перевода, постепенно приобрела новое, отличное от первоначального значение.

Указывая, что данная модель имитационная, мы обычно подчеркиваем, что, в отличие от других типов абстрактных моделей, в этой модели сохранены и легко узнаваемы такие черты моделируемого объекта, как структура, связи между компонентами, способ передачи информации . С имитационными моделями также обычно связывают и требование иллюстрации их поведения с помощью принятых в данной прикладной области графических образов . Недаром имитационными обычно называют модели предприятий, экологические и социальные модели.

Имитационное моделирование = компьютерное моделирование (синонимы). В настоящее время для этого вида моделирования используется синоним «компьютерное моделирование», подчеркивая тем самым, что решаемые задачи невозможно решить, используя стандартные средства выполнения вычислительных расчетов (калькулятор, таблицы или компьютерные программы, заменяющие эти средства).

Имитационная модель – специальный программный комплекс, который позволяет имитировать деятельность какого-либо сложного объекта, в котором:

  • отражена структура объекта (и представлена графическим образом) со связями;
  • выполняются параллельные процессы.

Для описания поведения могут использоваться как глобальные законы, так и локальные, полученные на основе натурных экспериментов

Таким образом, имитационное моделирование предполагает использование компьютерных технологий для имитации различных процессов или операций (т. е. их моделирования), выполняемых реальными устройствами. Устройство или процесс обычно именуется системой . Для научного исследования системы мы прибегаем к определенным допущениям, касающимся ее функционирования. Эти допущения, как правило, имеющие вид математических или логических отношений, составляют модель, с помощью которой можно получить представление о поведении соответствующей системы.

Если отношения, которые образуют модель, достаточно просты для получения точной информации по интересующим нас вопросам, то можно использовать математические методы. Такого рода решение называется аналитическим . Однако большинство существующих систем являются очень сложными, и для них невозможно создать реальную модель, описанную аналитически. Такие модели следует изучать с помощью моделирования. При моделировании компьютер используется для численной оценки модели, а с помощью полученных данных рассчитываются ее реальные характеристики.

С точки зрения специалиста (информатика-экономиста, математика-программиста или экономиста-математика), имитационное моделирование контролируемого процесса или управляемого объекта – это высокоуровневая информационная технология, которая обеспечивает два вида действий, выполняемых с помощью компьютера:

  • работы по созданию или модификации имитационной модели;
  • эксплуатацию имитационной модели и интерпретацию результатов.

Имитационное (компьютерное) моделирование экономических процессов обычно применяется в двух случаях:

  • для управления сложным бизнес-процессом, когда имитационная модель управляемого экономического объекта используется в качестве инструментального средства в контуре адаптивной системы управления, создаваемой на основе информационных (компьютерных) технологий;
  • при проведении экспериментов с дискретно-непрерывными моделями сложных экономических объектов для получения и отслеживания их динамики в экстренных ситуациях, связанных с рисками, натурное моделирование которых нежелательно или невозможно.

Типовые задачи имитационного моделирования

Имитационное моделирование может применяться в самых различных сферах деятельности. Ниже приведен список задач, при решении которых моделирование особенно эффективно:

  • проектирование и анализ производственных систем;
  • определение требований к оборудованию и протоколам сетей связи;
  • определение требований к оборудованию и программному обеспечению различных компьютерных систем;
  • проектирование и анализ работы транспортных систем, например аэропортов, автомагистралей, портов и метрополитена;
  • оценка проектов создания различных организаций массового обслуживания, например центров обработки заказов, заведений быстрого питания, больниц, отделений связи;
  • модернизация различных процессов в деловой сфере;
  • определение политики в системах управления запасами;
  • анализ финансовых и экономических систем;
  • оценка различных систем вооружений и требований к их материально-техническому обеспечению.

Классификация моделей

В качестве оснований классификации выбраны:

  • функциональный признак, характеризующий назначение, цель построения модели;
  • способ представления модели;
  • временной фактор, отражающий динамику модели.

Функция

Класс моделей

Пример

Описания

Объяснения

Демонстрационные модели

Учебные плакаты

Предсказания

Научно-технические

Экономические

Математические модели процессов

Модели разрабатываемых технических устройств

Измерения

Обработки эмпирических данных

Модель корабля в бассейне

Модель самолета в аэродинамической трубе

Интерпретаторская

Военные, экономические, спортивные, деловые игры

Критериальная

Образцовые (эталонные)

Модель обуви

Модель одежды

В соответствии с ней модели делятся на две большие группы: материальные и абстрактные (нематериальные) . И материальная, и абстрактная модели содержат информацию об исходном объекте. Только для материальной модели эта информация имеет материальное воплощение, а в нематериальной модели та же информация представляется в абстрактной форме (мысль, формула, чертеж, схема).

Материальная и абстрактная модели могут отражать один и тот же прототип и взаимно дополнять друг друга.

Модели можно условно разделить на две группы: материальные и идеальные , и, соответственно, различать предметное и абстрактное моделирование. Основными разновидностями предметного моделирования являются физическое и аналоговое моделирование.

Физическим принято называть такое моделирование (макетирование), при котором реальному объекту ставится в соответствие его увеличенная или уменьшенная копия. Эта копия создается на основе теории подобия, что и позволяет утверждать, что в модели сохранились требуемые свойства.

В физических моделях помимо геометрических пропорций может быть сохранен, например, материал или цветовая гамма исходного объекта, а также другие свойства, необходимые для конкретного исследования.

Аналоговое моделирование основано на замене исходного объекта объектом другой физической природы, обладающим аналогичным поведением.

И физическое, и аналоговое моделирование в качестве основного способа исследования предполагает проведение натурного эксперимента с моделью, но этот эксперимент оказывается в каком-то смысле более привлекательным, чем эксперимент с исходным объектом.

Идеальные модели – это абстрактные образы реальных или воображаемых объектов. Различают два типа идеального моделирования: интуитивное и знаковое.

Об интуитивном моделировании говорят, когда не могут даже описать используемую модель, хотя она и существует, но берутся с ее помощью предсказывать или объяснять окружающий нас мир. Мы знаем, что живые существа могут объяснять и предсказывать явления без видимого присутствия физической или абстрактной модели. В этом смысле, например, жизненный опыт каждого человека может считаться его интуитивной моделью окружающего его мира. Собираясь перейти улицу, вы смотрите направо, налево, и интуитивно решаете (обычно правильно), можно ли идти. Как справляется мозг с этой задачей, мы просто пока не знаем.

Знаковым называется моделирование, использующее в качестве моделей знаки или символы: схемы, графики, чертежи, тексты на различных языках, включая формальные, математические формулы и теории. Обязательным участником знакового моделирования является интерпретатор знаковой модели, чаще всего человек, но с интерпретацией может справляться и компьютер. Чертежи, тексты, формулы сами по себе не имеют никакого смысла без того, кто понимает их и использует в своей повседневной деятельности.

Важнейшим видом знакового моделирования является математическое моделирование . Абстрагируясь от физической (экономической) природы объектов, математика изучает идеальные объекты. Например, с помощью теории дифференциальных уравнений можно изучать уже упомянутые электрические и механические колебания в наиболее общем виде, а затем полученные знания применять для исследования объектов конкретной физической природы.

Виды математических моделей:

Компьютерная модель – это программная реализация математической модели, дополненная различными служебными программами (например, рисующими и изменяющими графические образы во времени). Компьютерная модель имеет две составляющие – программную и аппаратную. Программная составляющая так же является абстрактной знаковой моделью. Это лишь другая форма абстрактной модели, которая, однако, может интерпретироваться уже не только математиками и программистами, но и техническим устройством – процессором компьютера.

Компьютерная модель проявляет свойства физической модели, когда она, а точнее ее абстрактные составляющие – программы, интерпретируются физическим устройством, компьютером. Совокупность компьютера и моделирующей программы называется «электронным эквивалентом изучаемого объекта ». Компьютерная модель как физическое устройство может входить в состав испытательных стендов, тренажеров и виртуальных лабораторий.

Статическая модель описывает неизменяемые параметры объекта или единовременный срез информации по данному объекту. Динамическая модель описывает и исследует изменяемые во времени параметры.

Простейшая динамическая модель может быть описана в виде системы линейных дифференциальных уравнений:

все моделируемые параметры представляют функции от времени.

Детерминированные модели

Нет места случайности.

Все события в системе наступают в строгой последовательности, точно в соответствии с математическими формулами, описывающими законы поведения. А потому результат точно определен. И будет получаться один и тот же результат, сколько бы мы ни проводили экспериментов.

Вероятностные модели

События в системе наступают не в точной последовательности, а случайным образом. Но вероятность наступления того или иного события известна. Результат заранее неизвестен. При проведении эксперимента могут получаться разные результаты. В этих моделях накапливается статистика при проведении множества экспериментов. На основе этой статистики делаются выводы о функционировании системы.

Стохастические модели

При решении многих задач финансового анализа используются модели, содержащие случайные величины, поведение которых не поддается управлению со стороны лиц, принимающих решения. Такие модели называют стохастическими. Применение имитации позволяет сделать выводы о возможных результатах, основанные на вероятностных распределениях случайных факторов (величин). Стохастическую имитацию часто называют методом Монте-Карло .

Этапы компьютерного моделирования
(вычислительного эксперимента)

Его можно представить как последовательность следующих основных шагов:

1. ПОСТАНОВКА ЗАДАЧИ.

  • Описание задачи.
  • Цель моделирования.
  • Формализация задачи:
    • структурный анализ системы и процессов, протекающих в системе;
    • построение структурной и функциональной модели системы (графическое);
    • выделение существенных для данного исследования свойств исходного объекта

2. РАЗРАБОТКА МОДЕЛИ.

  • Построение математической модели.
  • Выбор программного средства моделирования.
  • Проектирование и отладка компьютерной модели (технологическая реализация модели в среде)

3. КОМПЬЮТЕРНЫЙ ЭКСПЕРИМЕНТ.

  • Оценка адекватности построенной компьютерной модели (удовлетворение модели целям моделирования).
  • Составление плана экспериментов.
  • Проведение экспериментов (исследование модели).
  • Анализ результатов эксперимента.

4. АНАЛИЗ РЕЗУЛЬТАТОВ МОДЕЛИРОВАНИЯ.

  • Обобщение результатов экспериментов и вывод о дальнейшем использовании модели.

По характеру постановки все задачи можно разделить на две основные группы.

К первой группе можно отнести задачи, в которых требуется исследовать, как изменятся характеристики объекта при некотором воздействии на него . Такую постановку задачи принято называть «что будет, если…?» Например, что будет, если повысить оплату за коммунальные услуги в два раза?

Некоторые задачи формулируются несколько шире. Что будет, если изменять характеристики объекта в заданном диапазоне с некоторым шагом ? Такое исследование помогает проследить зависимость параметров объекта от исходных данных. Очень часто требуется проследить развитие процесса во времени. Такая расширенная постановка задачи называется анализ чувствительности .

Вторая группа задач имеет такую обобщенную формулировку: какое надо произвести воздействие на объект, чтобы его параметры удовлетворяли некоторому заданному условию? Такая постановка задачи часто называется «как сделать, чтобы…?»

Как сделать, чтобы «и волки были сыты, и овцы целы».

Наибольшее количество задач моделирования, как правило, является комплексным. В таких задачах сначала строится модель для одного набора исходных данных. Иначе говоря, сначала решается задача «что будет, если…?» Затем проводится исследование объекта при изменении параметров в некотором диапазоне. И, наконец, по результатам исследования производится подбор параметров с тем, чтобы модель удовлетворяла некоторым проектируемым свойствам.

Из приведенного описания следует, что моделирование – процесс циклический, в котором одни и те же операции повторяются многократно.

Эта цикличность обусловлена двумя обстоятельствами: технологическими, связанными с «досадными» ошибками, допущенными на каждом из рассмотренных этапов моделирования, и «идеологическими», связанными с уточнением модели, и даже с отказом от нее, и переходом к другой модели. Еще один дополнительный «внешний» цикл может появиться, если мы захотим расширить область применимости модели, и изменим исходные данные, которые она должна правильно учитывать, или допущения, при которых она должна быть справедливой.

Подведение итогов моделирования может привести к выводу, что запланированных экспериментов недостаточно для завершения работ, а возможно и к необходимости вновь уточнить математическую модель.

Планирование компьютерногоэксперимента

В терминологии планирования экспериментов входные переменные и структурные допущения, составляющие модель, называются факторами, а выходные показатели работы – откликами. Решение о том, какие параметры и структурные допущения считать фиксированными показателями, а какие экспериментальными факторами, зависит скорее от цели исследования, а не от внутреннего вида модели.

Подробнее о планировании компьютерного эксперимента прочитать самостоятельно ( с. 707–724; с. 240–246).

Практические приемы планирования и проведения компьютерного эксперимента рассмотрены на практических занятиях.

Границы возможностей классических математических методов в экономике

Способы исследования системы

Эксперимент с реальной системой или с моделью системы? При наличии возможности физически изменить систему (если это рентабельно) и запустить ее в действие в новых условиях лучше всего поступить именно так, поскольку в этом случае вопрос об адекватности полученного результата исчезает сам собой. Однако часто такой подход неосуществим либо из-за слишком больших затрат на его осуществление, либо в силу разрушительного воздействия на саму систему. Например, в банке ищут способы снижения расходов, и с этой целью предлагается уменьшить число кассиров. Если опробовать в действии новую систему – с меньшим числом кассиров, это может привести к длительным задержкам в обслуживании посетителей и их отказу от услуг банка. Более того, система может и не существовать на самом деле, но мы хотим изучить различные ее конфигурации, чтобы выбрать наиболее эффективный способ выполнения. Примерами таких систем могут служить сети связи или стратегические системы ядерных вооружений. Поэтому необходимо создать модель, представляющую систему, и исследовать ее как заменитель реальной системы. При использовании модели всегда возникает вопрос – действительно ли она в такой степени точно отражает саму систему, чтобы можно было принять решение, основываясь на результатах исследования.

Физическая модель или математическая модель? При слове «модель» большинство из нас представляет себе кабины, установленные вне самолетов на тренировочных площадках и применяемые для обучения пилотов, либо миниатюрные супертанкеры, движущиеся в бассейне. Это всё примеры физических моделей (именуемых также иконическими или образными). Они редко используются при исследовании операций или анализе систем. Но в некоторых случаях создание физических моделей может оказаться весьма эффективным при исследовании технических систем или систем управления. Примерами могут служить масштабные настольные модели погрузочно-разгрузочных систем и, по крайней мере, один случай создания полномасштабной физической модели заведения быстрого питания в большом магазине, в реализации которой были задействованы вполне реальные посетители. Однако преобладающее большинство создаваемых моделей являются математическими. Они представляют систему посредством логических и количественных отношений, которые затем подвергаются обработке и изменениям, чтобы определить, как система реагирует на изменения, точнее – как бы она реагировала, если бы существовала на самом деле. Наверное, самым простым примером математической модели является известное соотношение S=V/t , где S – расстояние; V – скорость перемещения; t – время перемещения. Иногда такая модель может быть и адекватна (например, в случае с космическим зондом, направленным к другой планете, по достижении им скорости полета), но в других ситуациях она может не соответствовать действительности (например, транспортное сообщение в часы пик на городской перегруженной автостраде).

Аналитическое решение или имитационное моделирование? Чтобы ответить на вопросы о системе, которую представляет математическая модель, следует установить, как эту модель можно построить. Когда модель достаточно проста, можно вычислить ее соотношения и параметры и получить точное аналитическое решение. Однако некоторые аналитические решения могут быть чрезвычайно сложными и требовать при этом огромных компьютерных ресурсов. Обращение большой неразреженной матрицы является знакомым многим примером ситуации, когда существует в принципе известная аналитическая формула, но получить в таком случае численный результат не так просто. Если в случае с математической моделью возможно аналитическое решение и его вычисление представляется эффективным, лучше исследовать модель именно таким образом, не прибегая к имитационному моделированию. Однако многие системы чрезвычайно сложны, они практически полностью исключают возможность аналитического решения. В этом случае модель следует изучать с помощью имитационного моделирования, т.е. многократного испытания модели с нужными входными данными, чтобы определить их влияние на выходные критерии оценки работы системы.

Имитационное моделирование воспринимается как «метод последней надежды», и в этом есть толика правды. Однако в большинстве ситуаций мы быстро осознаем необходимость прибегнуть именно к этому средству, поскольку исследуемые системы и модели достаточно сложны и их нужно представить доступным способом.

Допустим, у нас есть математическая модель, которую требуется исследовать с помощью моделирования (далее – имитационная модель). Прежде всего нам необходимо прийти к выводу о средствах ее исследования. В этой связи следует классифицировать имитационные модели по трем аспектам.

Статическая или динамическая? Статическая имитационная модель – это система в определенный момент времени или же система, в которой время просто не играет никакой роли. Примерами статической имитационной модели являются модели, созданные по методу Монте-Карло. Динамическая имитационная модель представляет систему, меняющуюся во времени, например конвейерную систему на заводе. Построив математическую модель, следует решить, каким образом ее можно использовать для получения данных о системе, которую она представляет.

Детерминированная или стохастическая? Если имитационная модель не содержит вероятностных (случайных) компонентов, она называется детерминированной. В детерминированной модели результат можно получить, когда для нее заданы все входные величины и зависимости, даже если в этом случае потребуется большое количество компьютерного времени. Однако многие системы моделируются с несколькими случайными входными данными компонентов, в результате чего создается стохастическая имитационная модель. Большинство систем массового обслуживания и управления запасами именно таким образом и моделируется. Стохастические имитационные модели выдают результат, который является случайным сам по себе, и поэтому он может рассматриваться лишь как оценка истинных характеристик модели. Это один из главных недостатков моделирования.

Непрерывная или дискретная? Говоря обобщенно, мы определяем дискретную и непрерывную модели подобно ранее описанным дискретной и непрерывной системам. Следует заметить, что дискретная модель не всегда используется для моделирования дискретной системы, и наоборот. Необходимо ли для конкретной системы использовать дискретную или непрерывную модель, зависит от задач исследования. Так, модель транспортного потока на автомагистрали будет дискретной, если вам необходимо учесть характеристики и движение отдельных машин. Однако, если машины можно рассматривать в совокупности, транспортный поток может быть описан с помощью дифференциальных уравнений в непрерывной модели.

Имитационные модели, которые мы дальше рассмотрим, будут дискретными, динамическими и стохастическими. В дальнейшем будем именовать их дискретно-событийными имитационными моделями. Так как детерминированные модели представляют собой особый вид стохастических моделей, тот факт, что мы ограничиваемся только такими моделями, не влечет за собой каких-либо погрешностей в обобщении.

Существующие подходы к визуальному моделированию сложных динамических систем.
Типовые системы имитационного моделирования

Имитационное моделирование на цифровых вычислительных машинах является одним из наиболее мощных средств исследования, в частности, сложных динамических систем. Как и любое компьютерное моделирование, оно дает возможность проводить вычислительные эксперименты с еще только проектируемыми системами и изучать системы, натурные эксперименты с которыми, из-за соображений безопасности или дороговизны, не целесообразны. В то же время, благодаря своей близости по форме к физическому моделированию, этот метод исследования доступен более широкому кругу пользователей.

В настоящее время, когда компьютерная промышленность предлагает разнообразнейшие средства моделирования, любой квалифицированный инженер, технолог или менеджер должен уметь уже не просто моделировать сложные объекты, а моделировать их с помощью современных технологий, реализованных в форме графических сред или пакетов визуального моделирования.

«Сложность изучаемых и проектируемых систем приводит к необходимости создания специальной, качественно новой техники исследования, использующей аппарат имитации – воспроизведения на ЭВМ специально организованными системами математических моделей функционирования проектируемого или изучаемого комплекса» (Н.Н. Моисеев. Математические задачи системного анализа. М.: Наука, 1981, с. 182).

В настоящее время существует великое множество визуальных средств моделирования. Договоримся не рассматривать в этой работе пакеты, ориентированные на узкие прикладные области (электроника, электромеханика и т. д.), поскольку, как отмечалось выше, элементы сложных систем относятся, как правило, к различным прикладным областям. Среди оставшихся универсальных пакетов (ориентированных на определенную математическую модель), мы не будем обращать внимание на пакеты, ориентированные на математические модели, отличные от простой динамической системы (уравнения в частных производных, статистические модели), а также на чисто дискретные и чисто непрерывные. Таким образом, предметом рассмотрения будут универсальные пакеты, позволяющие моделировать структурно-сложные гибридные системы.

Их можно условно разделить на три группы:

  • пакеты «блочного моделирования»;
  • пакеты «физического моделирования»;
  • пакеты, ориентированные на схему гибридного автомата.

Это деление является условным прежде всего потому, что все эти пакеты имеют много общего: позволяют строить многоуровневые иерархические функциональные схемы, поддерживают в той или иной степени технологию ООМ, предоставляют сходные возможности визуализации и анимации. Отличия обусловлены тем, какой из аспектов сложной динамической системы сочтен наиболее важным.

Пакеты «блочного моделирования» ориентированы на графический язык иерархических блок-схем. Элементарные блоки являются либо предопределенными, либо могут конструироваться с помощью некоторого специального вспомогательного языка более низкого уровня. Новый блок можно собрать из имеющихся блоков с использованием ориентированных связей и параметрической настройки. В число предопределенных элементарных блоков входят чисто непрерывные, чисто дискретные и гибридные блоки.

К достоинствам этого подхода следует отнести прежде всего чрезвычайную простоту создания не очень сложных моделей даже не слишком подготовленным пользователем. Другим достоинством является эффективность реализации элементарных блоков и простота построения эквивалентной системы. В то же время при создании сложных моделей приходится строить довольно громоздкие многоуровневые блок-схемы, не отражающие естественной структуры моделируемой системы. Другими словами, этот подход работает хорошо, когда есть подходящие стандартные блоки.

Наиболее известными представителями пакетов «блочного моделирования» являются:

  • подсистема SIMULINK пакета MATLAB (MathWorks, Inc.; http://www.mathworks.com);
  • EASY5 (Boeing)
  • подсистема SystemBuild пакета MATRIXX (Integrated Systems, Inc.);
  • VisSim (Visual Solution; http://www.vissim.com).

Пакеты «физического моделирования» позволяют использовать неориентированные и потоковые связи. Пользователь может сам определять новые классы блоков. Непрерывная составляющая поведения элементарного блока задается системой алгебро-дифференциальных уравнений и формул. Дискретная составляющая задается описанием дискретных событий (события задаются логическим условием или являются периодическими), при возникновении которых могут выполняться мгновенные присваивания переменным новых значений. Дискретные события могут распространяться по специальным связям. Изменение структуры уравнений возможно только косвенно через коэффициенты в правых частях (это обусловлено необходимостью символьных преобразований при переходе к эквивалентной системе).

Подход очень удобен и естественен для описания типовых блоков физических систем. Недостатками являются необходимость символьных преобразований, что резко сужает возможности описания гибридного поведения, а также необходимость численного решения большого числа алгебраических уравнений, что значительно усложняет задачу автоматического получения достоверного решения.

К пакетам «физического моделирования» следует отнести:

  • 20-SIM (Controllab Products B.V; http://www.rt.el.utwente.nl/20sim/);
  • Dymola (Dymasim; http://www.dynasim.se);
  • Omola , OmSim (Lund University; http://www.control.lth.se/~cace/omsim.html);

Как обобщение опыта развития систем этого направления междунородной группой ученых разработан язык Modelica (The Modelica Design Group; http://www.dynasim.se/modelica), предлагаемый в качестве стандарта при обмене описаниями моделей между различными пакетами.

Пакеты, основанные на использовании схемы гибридного автомата , позволяют очень наглядно и естественно описывать гибридные системы со сложной логикой переключений. Необходимость определения эквивалентной системы при каждом переключении заставляет использовать только ориентированные связи. Пользователь может сам определять новые классы блоков. Непрерывная составляющая поведения элементарного блока задается системой алгебро-дифференциальных уравнений и формул. К недостаткам следует также отнести избыточность описания при моделировании чисто непрерывных систем.

К этому направлению относится пакет Shift (California PATH: http://www.path.berkeley.edu/shift), а также отечественный пакет Model Vision Studium . Пакет Shift в большей степени ориентирован на описание сложных динамических структур, а пакет MVS – на описание сложных поведений.

Заметим, что между вторым и третьим направлениями нет непреодолимой пропасти. В конце концов, невозможность их совместного использования обусловлена лишь сегодняшними вычислительными возможностями. В то же время общая идеология построения моделей практически совпадает. В принципе, возможен комбинированный подход, когда в структуре модели должны выделяться составные блоки, элементы которых имеют чисто непрерывное поведение, и однократно преобразовываться к эквивалентному элементарному. Далее уже совокупное поведение этого эквивалентного блока должно использоваться при анализе гибридной системы.

 


Читайте:



Примеры из литературы: самовоспитание личности Самовоспитание 2 примера из литературы

Примеры из литературы: самовоспитание личности Самовоспитание 2 примера из литературы

Самовоспитание как качество личности – способность к воспитательной работе над собой, формированию своей личности в соответствии с поставленными...

Численность, занятость, социальная защита

Численность, занятость, социальная защита

Общие данные о регионе. Численность населения республики Республика Бурятия - восточный регион России, который относится к Сибирскому федеральному...

Урок географии канады Канада — общие сведения

Урок географии канады Канада — общие сведения

Canada (2) Canada is situated on the north of Northern America, washed by the Atlantic Ocean in the east, the Pacific Ocean in the west, and...

К Епанчину отправляется Мышкин - главный герой, которого создал Достоевский -"идиот"

К Епанчину отправляется Мышкин - главный герой, которого создал Достоевский -

Роман "Идиот" Достоевского, отзывы о котором вы найдете в этой статье, - одно из самых известных произведений этого русского автора. Впервые он был...

feed-image RSS