Главная - Коэльо Пауло
Урановая бомба. Бомба Малыш для Хиросимы, как это было? Изотопы и радиоактивность

Мы не будем оригинальными, если скажем, что с двух атом­ных бомб, сброшенных 6 и 9 августа 1945 г. на Хиросиму и Нагасаки, начался совершенно новый этап в развитии человечес­кой цивилизации. Глобальные мировые войны навсегда ушли в историю. Осознание этого факта пришло не сразу, но сейчас, после 45 лет холодной войны, стало уже ясно, что ядерное ору­жие вообще нельзя считать оружием в традиционном смысле этого слова, означающим техническое средство ведения войны. Являясь всё это время наиболее эффективным средством под­держания глобального мира, оно не способно уберечь своих обладателей от позорных поражений в малых войнах (Суэцкий и Карибский кризисы, Корея, Вьетнам, Афганистан и др.).

История создания атомного оружия до сих пор полна белых пятен и ещё ждёт своего летописца, мы же в рамках краткого обзора остановимся только на наиболее важных событиях.

РАЗРАБОТКА ЯДЕРНОГО ОРУЖИЯ В США

Особый драматизм этой исто­рии придает тот факт, что явление деления ядра урана было открыто на рубеже 1938-1939 гг., когда скорое вооруженное столкновение в Европе стало уже практически неотвратимым, но мировое науч­ное сообщество было ещё единым. Если бы это произошло всего на год-два раньше, а такое вполне могло случиться, очень вероятно, что атомное оружие было бы приме­нено в Европе, причём наибольший научно-технический потенциал для его создания имела Германия. Пос­ле начала Второй мировой войны, когда коллективный разум физиков был разделен линиями фронтов, а фундаментальная наука была отло­жена до лучших времен, это откры­тие вообще могло не состояться.

Как бы там ни было, деление ядер урана было открыто, что по­служило толчком к развитию ядер­ной техники.

Сделаем небольшое отступле­ние для читателей, слегка забывших курс общей физики. Для возникно­вения и развития цепной реакции деления необходимо, чтобы в данный момент времени число испус­каемых нейтронов было больше числа поглощенных ядрами урана и других материалов, а также ушед­ших через поверхность образца, то есть коэффициент размножения нейтронов должен быть больше единицы. Количество испускаемых при делении нейтронов про­порционально плотности вещества и объёму, а количество уходящих нейтронов пропорционально пло­щади поверхности образца, поэто­му коэффициент размножения уве­личивается с ростом его размеров. Состояние с коэффициентом раз­множения нейтронов, равным еди­нице, получило название критичес­кого, а соответствующая масса вещества - критической массы. Ве­личина критической массы зависит от формы образца, его плотности, наличия других материалов, иг­рающих роль поглотителя или за­медлителя нейтронов, поэтому со­стояния критичности можно достичь различными способами, иногда даже помимо желания эксперимен­татора.

Ко времени открытия деления ядер урана было уже известно, что природный уран представляет со­бой смесь двух основных изотопов - 99,3% 238U и 0,7% 235U. Вскоре было показано, что цепная реак­ция возможна в изотопе 235U.

Таким образом, задача овладе­ния ядерной энергией сводилась к задаче промышленного разделения изотопов урана, технически очень сложной, но вполне разрешимой. В условиях начинавшейся большой вой­ны вопрос создания атомной бомбы становился вопросом времени.

Ещё спустя некоторое время было установлено, что цепная ре­акция возможна в искусственном элементе - плутонии 239Рu. Его можно было получить, облучая природный уран в ядерном реакторе.

Пионером в разработке ядер­ного оружия, можно считать Фран­цию. Имея отлично оснащённую лабораторию в Коллеж де Франс и государственную поддержку, французы выполнили много фунда­ментальных работ в ядерной обла­сти. В 1930-х гг. Франция скупила все запасы урановой руды в Бель­гийском Конго, что составляло по­ловину всего мирового запаса ура­на. В 1940 г., после падения Фран­ции, эти запасы на двух транспор­тах были переправлены в Америку. Впоследствии вся американская ядерная программа базировалась именно на этом уране.

Немецкие оккупационные влас­ти не обратили внимания на ядер­ную лабораторию - такие иссле­дования не были в Германии при­оритетными. Лаборатория благо­получно пережила оккупацию и сыграла ведущую роль при создании французской бомбы после войны.

В последнее время появилось много публикаций о том, что немцы близко подошли к созданию ядер­ной бомбы или даже имели её. Данный эпизод показывает, что это не так. В конце войны американцы послали в Европу специальную ко­миссию, которая шла за наступаю­щими войсками союзников и разыс­кивала следы немецких ядерных исследований. Её отчёт был опубли­кован, в том числе и на русском языке. Единственная существенная находка - образец недостроенно­го ядерного реактора. Его изуче­ние показало, что критического со­стояния этот реактор достичь не мог. Так что до создания бомбы немцам было очень далеко...

В Англии работы по исследова­нию деления урана начались поз­же, чем во Франции, зато сразу с четкой направленностью на созда­ния атомного оружия. Британцы выполнили расчёт, хотя и очень приближённый, критической массы урана 235, который не превышал 100 кг, а не тонн, как предполага­лось ранее. Была предложена пер­вая работоспособная схема ядер­ной бомбы пушечного типа. В ней критическая масса создаётся быст­рым сближением двух кусков 235U в пушечном стволе. Скорость сбли­жения оценивалась в 1000... 1800 м/с. В дальнейшем оказалось, что эта скорость была сильно завышена. В связи с уязвимым положением Ве­ликобритании под немецкими бом­бами, работы были перенесены в Канаду, а потом и в США.

Работы над атомной бомбой в США начались под влиянием Анг­лии, и физиков (как отечественных, так и эмигрировавших из Гер­мании). Основным аргументом был вопрос - а вдруг Герма­ния создаёт атомную бомбу? Деньги на исследования были выделены, и 2 декабря 1942 г в Чикаго был запущен первый атомный реактор на природ­ном уране и графите, в каче­стве замедлителя, а 13 августа 1942 г. был создан Манхэттенский округ инженерных войск. Так возник Манхэттенский про­ект, увенчавшийся созданием атомной бомбы в 1945 г.

Главным вопросом при со­здании бомбы, было получение пригодных для неё делящихся материалов. Природные изо­топы урана - 235U и 238U име­ют совершенно одинаковые хи­мические и физические свой­ства, поэтому разделить их известными на то время методами было невозможно. Разница состоит только в ничтожном различии атомной массы этих изотопов. Только используя эту разницу, можно было попробовать разделить изотопы. Исследования показали практическую осуществимость четырёх методов разделения изото­пов урана:

  • электромагнитное разделе­ние;
  • газодиффузионное разделе­ние;
  • термодиффузионное разде­ление;
  • разделение изотопов на высо­коскоростных центрифугах.

Все четыре метода требовали строительства огромных заводов с многоступенчатым производствен­ным процессом, потребляющих большое количество электроэнер­гии, требующих больших объёмов глубокого вакуума и других тонких и сложных технологий. Финансовые и интеллектуальные затраты обе­щали быть огромными. Тем не ме­нее, в США были построены обо­гатительные заводы по первым трём методам (высокоскоростные цент­рифуги в то время оставались ла­бораторными образцами).

К концу 1945 г. производитель­ность американской промышленно­сти составила 40 кг оружейного урана 235 - 80% (позже - 90%) обогащения. Для секретности ору­жейный уран назвали сплав Оралой. Обогащенный уран использо­вался не только для создания бом­бы. Уран, обогащенный до 3%...4% нужен для создания реакторов.

В последнее время часто упоми­нается обеднённый уран. Здесь нуж­но понимать, что это уран, из кото­рого извлекли какую то часть изо­топа 235U. То есть, по сути дела, это отходы ядерного производства. Такой уран используют для легиро­вания твёрдых сплавов, применяе­мых в бронебойных артиллерийских снарядах. Другое применение ура­на - создание некоторых красок.

Для производства оружейного плутония в Хэнфорде, шт. Вашинг­тон, был создан промышленный комплекс, включающий: атомные уран-графитовые реакторы, радио­химическое производство для выде­ления плутония из извлечённых из реакторов материалов, а также металлургическое производство. Плутоний - металл, и его нужно плавить и рафинировать.

В плутониевом цикле свои труд­ности: мало того, что атомный ре­актор сам по себе - сложнейший агрегат, требующий многих знаний и больших затрат, но и весь цикл - грязный. Всё оборудование и вы­пускаемая продукция были радио­активными, что требовало приме­нения особых методов производства и средств защиты.

Первую продукцию - металли­ческий плутоний-239 - завод в Хэн­форде выдал в начале 1945 г. Его производительность в 1945 г. со­ставляла около 20 кг плутония в месяц, что позволяло изготавливать в месяц до трех атомных бомб.

До середины 1942 г. разработ­ке собственно атомной бомбы осо­бого внимания не уделялось. Глав­ным считалось получение для неё делящихся материалов - урана-235 и плутония-239. Для разработки и сборки атомных бомб в пус­тынном штате Нью-Мексико был построен закрытый науч­ный городок Лос-Аламос (Лагерь V).

Весной 1945 г. в Лос-Ала­мосе действовали следующие подразделения: теоретической физики (директор X. Бете), экспериментальной ядерной физики (Дж. Кеннеди и С. Смит), военное (У. Парсонс), взрывчатых веществ (Г. Кистяковский), физики бомбы (Р. Бахер), перспективных исследо­ваний (Э. Ферми), химии и ме­таллургии. Каждое подразде­ление делилось на группы по усмотрению их руководите­лей.

Создание американских атомных бомб обошлось не­дёшево. Общие затраты оце­ниваются суммой, превышающей 2 млрд. долл. Только в Лос-Аламосе на начальном этапе создания ядерного оружия произошло семь радиационных аварий с человеческими жертвами. Наиболее известна гибель от переоблучения молодого физика Луи Слотина, занимавшегося опасными экспериментами с подкритическими сборками.

«Теперь можно учитывать в на­ших оперативных планах существо­вание бомбы пушечного типа, ко­торая должна предположительно иметь мощность, эквивалентную взрыву 10000 т тринитротолуола (ТНТ). Если не производить настоя­щего испытания (нам это не кажет­ся необходимым), первая бомба должна быть готова к 1 августа 1945 г. Вторая должна быть закон­чена к концу года, а последующие... через промежутки времени, кото­рые предстоит уточнить.

Сначала мы надеялись, что к кон­цу весны станет возможным создать бомбу компрессионного (имплозив­ного) типа, однако эти на­дежды не сбылись вследствие трудностей научного характера, кото­рые пока не удалось преодолеть. В настоящее время эти осложнения приводят к тому, что нам необходи­мо большее количество материа­ла, который будет использован с меньшей эффективностью, чем это предполагалось ранее. Мы будем располагать достаточным количе­ством сырья для изготовления бом­бы компрессионного типа к концу июля. Эта бомба должна будет иметь мощность, эквивалентную примерно 500 т ТНТ. Можно наде­яться, что во второй половине 1945 г. нам удастся изготовить... другие дополнительные бомбы. Они будут иметь большую мощность: по мере продолжения работ мощность каждой бомбы сможет достичь эквивалента 1000 т ТНТ; если нам удастся разрешить некоторые проб­лемы, мощность атомной бомбы сможет достичь 2500 т ТНТ.

Оперативный план, основанный в настоящее время на более на­дежном использовании мощной бомбы пушечного типа, предпола­гает также использований бомб компрессионного типа, когда их будет достаточное количество. Осуществление различных ста­дий нашего плана не должны препятствовать никакие трудно­сти, за исключением тех, кото­рые связаны с решением про­блем, имеющих чисто научный характер».

Обращает на себя внимание уверенность генерала в успехе урановой бомбы и очень осто­рожное его отношение к бомбе плутониевой.

Здесь настало время перей­ти к конкретному описанию кон­струкции первых американских атомных бомб - знаменитых «Малыша» и «Толстяка», а также их послевоенных модификаций.

БОМБЫ «МАЛЫШ» И «ТОЛСТЯК»

В период разработки и в 1945 г. они назывались (совсем как у нас) скромным словом изделие (gadget), но после войны, с официальным при­нятием изделий на вооружение, они получили соответствующую марки­ровку. «Малыш» и «Толстяк» полу­чили обозначение соответственно Mk.I и Mk.III, нереализованный про­ект плутониевой бомбы военного времени - Mk.II.

Конструкция бомбы пушечного типа Little Boy («Малыш») была раз­работана под руководством Уилья­ма Парсонса. Принцип её действия был основан на создании критичес­кой массы урана-235 путём сбли­жения двух подкритических масс в орудийном стволе. Схема такой бомбы и основные методы разде­ления изотопов урана были изложены ещё в английском отчете Ко­митета Томсона, переданном аме­риканским специалистам осенью 1941 г., поэтому «Малыша» можно с полным основанием называть бомбой английского типа.

В отчёте Комитета Томсона ука­зывалась основная трудность на пути реализации пушечной схемы – большая требуемая скорость сближения подкритических масс. Она необходима для того, чтобы не допустить преждевременного разлёта урана при начале цепной реакции. По оценкам английских специалистов, эта скорость состав­ляла примерно 1000-1800 м/с, что близко к предельной для артилле­рийских систем величине. Дальней­шие исследования показали, что эта оценка завышена, и при условии ис­пользования для начала цепной ре­акции нейтронного инициатора, скорость сближения подкритических масс может быть намного меньшей - порядка 300-500 м/с. Кроме того, задача существенно облегча­лась тем, что конструкция была од­норазовой, поэтому запас прочно­сти ствола можно было принять близким к единице. Интересно, что по воспоминаниям Гровса, это было осознано разработчиками бомбы не сразу, поэтому первоначально её конструкция получалась сильно перетяжелённой.

Ядерный заряд из урана-235 - 80% обогащения состоит из двух подкритических масс - цилиндри­ческого снаряда и мишени, поме­щённых в ствол из легированной стали. Мишень представляет собой три кольца диаметром 152 мм (6 дюймов) и общей длиной 203 мм (8 дюймов), установленных в массив­ном стальном отражателе нейтро­нов диаметром 610 мм (24 дюйма). Отражатель выполняет также роль инертной массы, препятствующей быстрому разлёту делящихся мате­риалов при развитии цепной реак­ции. Масса стального отражателя составляет 2270 кг - больше поло­вины всей массы бомбы.

Масса уранового заряда «Ма­лыша» составляет 60 кг, из которых 42% (25 кг) приходятся на снаряд, а 58% (35 кг) - на мишень. Это зна­чение примерно соответствует кри­тической массе урана-235 - 80% обогащения. Для быстрого разви­тия цепной реакции и, следователь­но, высокого коэффициента исполь­зования делящихся материалов применён нейтронный инициатор, ус­тановленный на дне мишени.

В принципе, заряд пушечного типа может работать и без нейт­ронного инициатора, но тогда цеп­ная реакция в массе, незначитель­но превышающей критическую, бу­дет развиваться медленнее, что уменьшит коэффициент использова­ния делящихся материалов.

Калибр пушечного ствола со­ставляет 76,2 мм (3 дюйма - один из стандартных артиллерийских ка­либров), а его длина - 1830 мм. В хвостовой части бомбы помещает­ся поршневой затвор, урановый снаряд и картузный заряд бездым­ного пороха, массой несколько фунтов (1 фунт - 0,454 кг). Масса ствола составляет 450 кг, затвора - 35 кг. При выстреле урановый снаряд разгоняется в стволе до ско­рости около 300 м/с. В популярных фильмах, посвященных ядерному оружию, показывают драмати­ческую сцену, как в полёте, в бомбовом отсеке, специалист по ядерному оружию откручи­вает какие-то гайки и выпол­няет какие-то манипуляции с бомбой, тщательно пересчиты­вая гайки. Так он заряжает «Малыша» перед сбросом.

Корпус «Малыша» имел ци­линдрическую форму и, по мнению летчиков, больше всего напоминал мусорный бак с хвос­том. Для защиты от осколков зенитных снарядов он вы­полнен из легированной ста­ли толщиной 51 мм (2 дюйма).

Требование защиты от зенит­ной артиллерии после войны было признано надуманным, приведшим лишь к неоправдан­ному перетяжелению первых атомных бомб. Действительно, попасть в небольшую бомбу, па­дающую с околозвуковой ско­ростью, практически невоз­можно.

Бомба имеет стандартное для американских авиабомб Второй мировой войны довольно громоздкое хвостовое оперение. Длина «Малыша» составляет 3200 мм, диаметр - 710 мм, полный вес - 4090 кг. Бомба имеет один узел подвески. После отделения от са­молёта бомба свободно падала по баллистической траектории, дости­гая у земли околозвуковых скорос­тей. Никакой парашютной системы, упоминаемой в некоторых популяр­ных книгах, не было. Благодаря пе­редней центровке и большому уд­линению, «Малыш» выгодно отли­чался от «Толстяка» устойчивостью на траектории и, следовательно, хо­рошей точностью попадания.

Система подрыва бомбы долж­на была обеспечить её взрыв на высоте 500-600 м над землёй, оп­тимальной для образования у по­верхности мощной ударной волны. Известно, что ядерный взрыв имеет четыре основных поражающих фак­тора: ударную волну, световое из­лучение, проникающую радиацию и радиоактивное заражение мест­ности. Последнее максимально при наземном взрыве, когда большин­ство радиоактивных продуктов де­ления остается на месте взрыва. Си­стема подрыва должна удовлетво­рять двум совершенно противопо­ложным требованиям:

1. Бомба должна быть безопас­ной в обращении, поэтому несанк­ционированный ядерный взрыв дол­жен быть совершенно исключён.

2. При сбросе над целью дол­жен быть гарантирован взрыв на заданной высоте, в крайнем слу­чае - самоликвидация бомбы при ударе о землю, чтобы она не попа­ло в руки противника.

Основными компонентами сис­темы подрыва являются четыре ра­диовысотомера, барометрический и временной предохранители, блок автоматики, источник питания (аккумулятор).

Радиовысотомеры APS-13 Арчи обеспечивают взрыв бомбы на за­данной высоте. При этом для повы­шения надёжности блок автомати­ки подрыва срабатывает при получении сигнала от любых двух из че­тырех высотомеров. Малогабарит­ный высотомер Арчи был разрабо­тан ранее в лаборатории Альва­реса по заказу ВВС как радиодальномер защиты хвоста самолёта, но в этом качестве он не нашёл широкого применения. Дальность действия Арчи составляла 600–800 м, используемый как радиовысотомер, он выдавал команду на подрыв бомбы на высоте 500-600 м. Так как носовая часть бомбы занята массивным стальным отражателем, характерные штыревые антенны Арчи размещаются на боковой по­верхности корпуса. Антенны были весьма уязвимы, поэтому при хра­нении и транспортировке бомбы они снимались. Интересно, что 6 и 9 августа 1945 г., в дни атомных бомбардировок Хиросимы и Нага­саки, чтобы не помешать работе радиовзрывателей «Малыша» и «Толстяка», всей американской авиации, действовавшей над Япо­нией, было запрещено ставить радиопомехи.

Для предотвращения несанкци­онированного взрыва бомбы слу­жит барометрический предох­ранитель, который блокирует цепи подрыва на высотах, больших 2135 м. Давление к бародатчику по­даётся через снабженные дефлек­торами воздухозаборники, симмет­рично расположенные вокруг хво­стовой части бомбы.

Временной предохранитель (тай­мер) предотвращает срабатывание радиовысотомера по сигналу, от­ражённому от самолёта-носителя в случае неисправности баромет­рического предохранителя. Он бло­кирует цепь подрыва в течение пер­вых 15 с после отделения от само­лёта.

Таким образом, автоматика бом­бы работает следующим образом:

1. Сброс бомбы осуществляет­ся с высоты 9500-10000 м. Через 15 с после отделения от самолёта-носителя, когда бомба удаляется от него примерно на 1100 м, времен­ной предохранитель включает сис­тему подрыва.

2. На высоте 2100-2200 м ба­рометрический предохранитель включает радиовысотомеры и цепь зарядки высоковольтного конденса­тора подрыва по схеме: аккумуля­тор - инвертор - трансформатор - выпрямитель - конденсатор.

3. На высоте 500-600 м при срабатывании двух из четырёх радиовысотомеров, блок ав­томатики подрыва разряжает конденсатор на элек­тродетонатор пушечного заря­да.

4. В случае полного отка­за всех вышеперечисленных систем, бомба взрывается от обычного взрывателя, при ударе о землю.

Расчетный тротиловый эк­вивалент (ТЭ) «Малыша» составлял 10-15 кТ.

На изготовление первой атомной бомбы, сброшенной 6 августа 1945 г. на Хиросиму, ушёл практи­чески весь полученный к тому вре­мени оружейный уран, поэтому полигонные испытания бомбы не проводились, тем более, что рабо­тоспособность её несложной и хо­рошо отработанной конструкции сомнений не вызывала. Вообще разработка и доводка «Малыша» были практически закончены к кон­цу 1944 г., и его применение задер­живалось только отсутствием необ­ходимого количества урана-235. Обогащенный уран с большими трудностями был получен только в июне 1945 г.

По разрушениям в Хиросиме была проведена приблизительная оценка мощности бомбы, которая реально составляла 12-15 кт тротилового эквивалента. Количество урана, вступившего в реакцию де­ления, не превышало 1,3%.

На производство 1 кг урана-235 80% обогащения по технологии 1945 г. требовалось около 600000 кВт-ч электроэнергии и более 200 кг природного урана, соответственно один «Малыш» с урановым зарядом массой 60 кг обходился в 36000 МВт-ч энергии, более 12 т урана и пол­тора месяца непрерывной работы промышленного гиганта в Ок-Ридже. Именно из-за неэкономичного использования крайне дорогостоя­щих делящихся материалов, ядерные заряды пушечного типа, впослед­ствии, были почти полностью вытес­нены имплозивными.

После войны история «Малыша» не закончилась. Между августом 1945 г. и февралем 1950 г. было изготовлено пять урановых бомб типа Mk.l, все они были сняты с вооружения уже в январе 1951 г. Вновь о «Малыше» вспомнили, ког­да флоту США потребовалась ма­логабаритная атомная бомба для разрушения сильно защищенных це­лей. Модернизированный вариант «Малыша» получил обозначение Мк.8 и состоял на вооружении с 1952 по 1957 гг.

Другой путь создания атомной бомбы базировался на использо­вании плутония. Основная трудность в создании плутониевой бом­бы заключалась в свойствах само­го плутония. Он делится интенсив­нее, чем уран, поэтому критичес­кая масса для плутония существен­но меньше, чем у урана (11 кг для 239Ри и 48 кг для 235U). Плутоний радиоактивен и ядовит, поэтому при работах с ним нужно использовать средства защиты.

Металлический плутоний имеет малую прочность, в диапазоне тем­ператур от комнатной до темпера­туры плавления проходит шесть мо­дификаций строения кристалличес­кой решётки, с разной плотностью и подвергается интенсивной корро­зии на открытом воздухе. Кроме того, он постоянно выделяет тепло, которое необходимо отводить. Для преодоления этих черт, детали из плутония приходится легировать другими металлами и наносить за­щитные покрытия.

Как было сказано ранее, крити­ческое состояние можно получить не только быстрым сближени­ем двух масс (для плутония этот путь не выгоден, в силу ряда причин), но и путём увеличе­ния плотности подкритической массы делящегося материала. Плутоний для этого подходил лучше, чем уран.

Из школьного курса физи­ки мы знаем, что твёрдые тела и жидкости несжимаемы. Для повседневной жизни - это действительно так. Но если приложить ОЧЕНЬ большое давление, то твёрдое тело (ку­сок плутония) можно сжать. Тогда он достигнет критичес­кого состояния, и произойдёт ядерный взрыв. Достичь этого давления можно при помощи взрыва обычной взрывчатки. Для этого нужно ядро из плутония поместить в сферу из обычного взрывчатого вещества (ВВ). По всей поверхности взрыв­чатки расположить детонаторы и одновременно их подорвать. Тогда внешняя поверхность сферы будет разлетаться в стороны, а детонаци­онная волна пойдёт внутрь и сожмёт ядерный заряд.

Практически осуществить мы это не можем - ведь невозможно на поверхности сферы разместить ог­ромное количество детонаторов. Решением проблемы стала нетривиальная идея имплозии (Implosion) - взрыва, направленного вовнутрь, предложенная Сетом Неддермейером. Процесс взрыва нам кажется мгновенным, но на самом деле про­цесс детонации ВВ происходит во фронте детонационной волны, ко­торая распространяется в взрыв­чатке со скоростью 5200..7800 м/с. Для разных сортов взрывчатки ско­рость детонации разная.

Для получения сферически схо­дящейся волны, поверхность сферы была разделена на отдельные бло­ки. В каждом блоке детонация ини­циируется в одной точке, а затем расходящаяся из этой точки волна детонации преобразуется линзой в сходящуюся. Принцип действия лин­зы из ВВ совершенно аналогичен принципу действия обычной опти­ческой линзы. Преломление фрон­та волны детонации осуществляет­ся за счет различной скорости де­тонации в различных взрывчатых ве­ществах. Чем больше разница ско­ростей детонации в элементах лин­зового блока, тем он получается компактнее. Из геометрических сооб­ражений, на поверхности сферы мож­но разместить 32, 60 или 92 линзы.

Чем больше линз в сферически симметричном заряде, тем он ком­пактнее, а сферичность имплозии выше, но сложнее автоматика под­рыва. Последняя должна обеспечить одновременный подрыв всех детонаторов с разбросом по вре­мени не более 0,5-1,0 мкс.

В первые послевоенные годы, в печати часто обсуждался вопрос о секрете атомной бомбы. И хотя Вя­чеслав Молотов, в одной из своих речей сказал, что для нас никакого секрета не существует, мы должны понимать, что этот «секрет» распа­дается на множество составляющих секретов, каждый из которых важен для общего успеха. О трудностях получения делящихся материалов мы уже упоминали. Не менее важно было понимать свойства взрывчат­ки и процессов её детонации. Не­обходимо было обеспечить стабильность качества взрывчатки не­зависимо от партии и внешних ус­ловий. Это потребовало проведе­ния больших исследовательских работ.

Другой секрет - разработка си­стемы подрыва и детонаторов, одновременно срабатываю­щих на всей сфере заряда. Это так же является технологичес­ким секретом.

Центральный металличес­кий узел ядерного заряда, со­стоит из концентрически установленных (от центра к пери­ферии) импульсного источни­ка нейтронов, ядра из деля­щихся материалов и отража­теля нейтронов из природно­го урана. После войны, центральный узел усовершенство­вали - между внутренним сло­ем отражателя нейтронов и яд­ром из плутония оставили не­который зазор. Ядро оказывалось как бы «висящим» внутри заряда. При взрыве отражатель в этом зазоре успевает набрать дополнительную скорость до удара в ядро. Это позволяет суще­ственно увеличить степень сжатия ядра и, соответственно, коэффици­ент использования делящихся мате­риалов. Левитирующее ядро исполь­зовалось в зарядах послевоенных бомб Мк.4, Мк.5, Мк.6, Мк.7 и др.

Из сказанного выше вытекает один из способов обеспечения бе­зопасности при хранении ядерных боеприпасов: нужно извлечь деля­щееся ядро из взрывающейся сфе­ры, и хранить его отдельно. Тогда в случае аварии взорвётся обыкно­венная взрывчатка, но ядерного взрыва не будет. Вводить ядро в боеприпас нужно непосредственно перед применением.

Отработка имплозивного заря­да требовала большого объёма взрывных экспериментов с инертным веществом вместо плутониевого ядра. Конечной целью было добить­ся правильного сферического об­жатия центрального ядра. После ин­тенсивных работ, 7 февраля 1945 г. был испытан имплозивный за­ряд (без делящихся материа­лов) давший удовлетворитель­ные результаты. Это открыло путь к созданию «Толстяка».

Принцип действия бомбы имплозивного типа и само сло­во имплозия оставались в США секретными даже после опуб­ликования в 1946 г. известного официального отчета «Атомная энергия для военных целей». Впервые краткое описание им­плозивной бомбы появилось только в 1951 г. в материалах судебного расследования по делу советского агента Дэви­да Грингласса, работавшего механиком в Лос-Аламосе.

Вершиной второго, плуто­ниевого, направления Манхэттенского проекта стала бом­ба Mk.III «Fat Man» («Толстяк»).

В центре заряда помещён источник нейтронов (инициа­тор), за характерный внешний вид получивший прозвище шарик для гольфа.

Активным материалом атомной бомбы является легированный плутоний-239 с плотностью 15,9 г/куб.см. Заряд изго­товлен в виде полого шара, со­стоящего из двух половинок. Внешний диаметр шара 80-90 мм, масса - 6,1 кг. Это зна­чение массы плутониевого ядра приведено в рассекре­ченном ныне докладе генера­ла Гровса от 18 июня 1945 г. о результатах первого ядерного испытания.

Плутониевое ядро установ­лено внутри полого шара из металлического природного урана с внешним диаметром 460 мм (18 дюймов). Урановая оболоч­ка играет роль отражателя нейт­ронов и также состоит из двух по­лусфер. Снаружи урановый шар окружен тонким слоем боросодержащего материала, уменьшающего ве­роятность преждевременного нача­ла цепной реакции. Масса урано­вого отражателя - 960 кг.

Вокруг центрального металлического узла размещается состав­ной заряд взрывчатого вещества. Заряд ВВ состоит из двух слоев. Внутренний формируется двумя полусферическими блоками, изготов­ленными из мощной взрывчатки. Внешний слой ВВ образован лин­зовыми блоками, схема которых опи­сана выше. Детали блоков изготов­лены из ВВ с точными (машиностро­ительными) допусками размеров. Всего во внешнем слое составного заряда 60 блоков ВВ с 32 взрывны­ми линзами.

Детонация составного заряда инициируется одновременно (±0,2 мкс) в 32 точках 64 высоковольтными электродетонаторами (для большей надёжности детонаторы дублированы). Профиль взрывных линз обес­печивает превращение расходя­щейся волны детонации в схо­дящуюся к центру заряда. К момен­ту окончания детонации линзовых блоков на поверхности внутренне­го сплошного слоя ВВ формирует­ся сферически симметричная схо­дящаяся детонационная волна с давлением во фронте не­сколько тысяч атмосфер. При прохождении её через ВВ дав­ление возрастает ещё почти вдвое. Затем ударная волна проходит через урановый отражатель, сжимает плутони­евый заряд и переводит его в надкритическое состояние, а поток нейтронов, возникаю­щий при разрушении не­йтронного инициатора, вызы­вает цепную ядерную реак­цию. Степень сжатия ядра в первой имплозивной бомбе была относительно неболь­шой - порядка 10%.

Общая масса химическо­го взрывчатого вещества со­ставляла около 2300 кг, то есть примерно половину полной массы бомбы. Наружный диа­метр составного заряда 1320 мм (52 дюйма).

Заряд взрывчатого веще­ства вместе с центральным ме­таллическим узлом размещался в дюралевом корпусе сфе­рической формы диаметром 1365 мм (54 дюйма), на наруж­ной поверхности которого установлены 64 разъёма для крепления электродетонаторов. Корпус заряда собирал­ся на болтах из двух полусфе­рических оснований и пяти центральных сегментов. К фланцам корпуса крепились пе­редний и задний конусы. На переднем конусе установлен блок автоматики подрыва (блок X), на заднем - радио­дальномеры, барометричес­кий и временной предохранители.

Эта сборка (без заднего ко­нуса со всем его содержимым) и была, собственно, ядерным зарядом, взорванным в Аламогордо 16 июля 1945 г.

Тротиловый эквивалент заряда составлял 22±2 кт.

Ядерный заряд установлен в бал­листическом корпусе эллиптической формы, напоминавшем дыню, отсю­да и прозвище - «Толстяк». Чтобы противостоять осколкам зенитных снарядов, он выполнен из броне­вой стали толщиной 9,5 мм (3/8 дюйма). Масса корпуса составляет почти половину всей массы бомбы. Корпус имеет три поперечных разъёма, по которым разделяется на четыре секции: носовой отсек, передний и задний полуэллипсои­ды, образующие отсек ядерного за­ряда, хвостовой отсек. На фланце носового отсека установлены ак­кумуляторные батареи. Носовой отсек и отсек ядерного заряда вакуумируются для защиты автомати­ки от влаги и пыли, а также для повышения точности бародатчика.

Максимальный диаметр бомбы составлял 1520 мм (60 дюймов), дли­на - 3250 мм (128 дюймов), полная масса - 4680 кг. Диаметр опреде­лялся размерами ядерного заряда, длина - протяженностью передне­го бомбоотсека бомбардировщика В-29.

Интересно, что за время довод­ки имплозивного заряда изменялся и корпус бомбы. Первый его вари­ант (модель 1222) был признан не­удачным. Окончательный вариант баллистического корпуса получил обозначение Модель 1561. После войны первый, неосуществлённый вариант плутониевой бомбы полу­чил обозначение Mk.II, а её окончательный вариант, взорванный в Аламогордо, Нагасаки и на атол­ле Бикини - Mk.III.

Компоновку «Толстяка» и форму его эллиптического корпуса нельзя назвать удачными с точки зрения аэродинамики. Тяжелый ядерный заряд расположен в средней части корпуса, так что центр масс бомбы совпадает с центром давления, по­этому устойчивость бомбы на траектории можно было обеспечить только за счет развитого хвостово­го оперения.

Его доводка вызвала наиболь­шие (если не считать ядерных про­блем) трудности. Эксперименты по сбрасыванию макетов бомбы про­водились на авиабазе Мюрок Драй Лэйк в Калифорнии. Первоначаль­но «Толстяк» имел изящный кольце­вой стабилизатор. Испытания были неудачными: при падении с боль­шой высоты бомба разгонялась до околозвуковых скоростей, картина обтекания нарушалась, и бомба начинала кувыркаться. Кольцевой стабилизатор заменили на обыч­ный для американских бомб - ко­робчатый, большей площади, но и ему не удалось стабилизировать «Толстяка».

Ранее с той же проблемой стол­кнулся Барнс Уоллис, конструктор английских сверхтяжелых 5- и 10-тонных бомб «Толлбой» и «Грэнд Слэм». Уоллису удалось обеспечить их устойчивость за счёт большого удлинения корпуса (порядка 6) и вращения бомбы вокруг продоль­ной оси.

Удлинение «Толстяка» составля­ло всего 2,1 и было лимитировано размерами ядерного заряда и бом­боотсека. Было предложено приме­нить парашютную систему, но это было крайне нежелательно, так как увеличило рассеивание бомбы и её уязвимость от огня ПВО противника.

В конце концов, инженерам-ис­пытателям авиабазы удалось най­ти приемлемую конструкцию короб­чатого хвостового стабилизатора, известную как Калифорнийский парашют. Калифорнийский парашют представлял собой громоздкую дю­ралевую конструкцию массой 230 кг, состоящую из 12 плоскостей общей площадью 5,4 кв.м. Стабилизация осуществлялась не столько за счёт смещения центра давления, сколь­ко за счёт эффекта воздушного тор­моза.

Калифорнийский парашют не дал «Толстяку» кувыркаться, но его устойчивость на траектории остав­ляла желать лучшего. Колебания бомбы по углам рыскания и танга­жа достигали 25°, при этом нагруз­ки на хвостовое оперение прибли­жались к пределу его прочности. Соответственно, круговое вероят­ное отклонение бомбы достигало 300 м (для сравнения, у английской 5-тонной бомбы «Толлбой» - порядка 50 м). Непредсказуемость своей траектории Толстяк проде­монстрировал на практике: по неко­торым данным, в Нагасаки он взор­вался в 2000 м от точки прицелива­ния («Малыш» в Хиросиме - всего в 170 м), на испытаниях в Бикини в 1946 г. он промазал на 650 м.

Состав и логика работы авто­матики подрыва аналогичны тако­вым у «Малыша». Высоковольтные блоки, для повышения надёжности их было два, каждый со своей группой детонаторов, обеспечивали од­новременный подрыв всех 32 лин­зовых блоков. Штыревые антенны радиовысотомеров Арчи устанав­ливались, как и у «Малыша», на боковой поверхности корпуса, возду­хозаборники и коллектор бародат­чика - в его хвостовой части.

Вокруг передней крышки корпу­са установлены четыре стандарт­ных ударных взрывателя AN 219, свя­занных с составным зарядом дето­нирующими трубками. Ударные взрыватели обеспечивали самолик­видацию бомбы при ударе о грунт даже в случае полного отказа всей автоматики. Конечно, ядерный взрыв, для которого требовался одновременный подрыв всех бло­ков ВВ, при этом исключался. Ан­тенны радиовысотомеров и удар­ные взрыватели устанавливались непосредственно перед боевым вылетом, поэтому на большинстве фотографий «Толстяка» они отсут­ствуют.

Для отработки атомной бомбы был спроектирован массогабаритный макет «Толстяка». Такие маке­ты, получившие прозвище Pumpkinsi («Тыква»), были изготовлены в коли­честве около 200 штук и использовались для тренировок лётчиков и обслуживающего персонала. Для соблюдения секретности «Тыквы» считались прототипами фугасной бомбы большой мощности и сна­ряжались 2500 кг ВВ и тремя удар­ными взрывателями.

В отличие от «Малыша», плуто­ниевая бомба «Толстяк» изготавли­валась серийно, хотя в 1945 г. это был только экспериментальный об­разец, собранный «на коленке» физиками и техниками из Лос-Ала­моса. К концу года они собрали ещё две такие бомбы.

После войны началось новое, очень опасное противостояние с бывшим союзником - Советским Союзом. Для гарантии безопасно­сти Запада было принято решение иметь в готовности к боевому при­менению не менее 50 атомных бомб. «Толстяк» имел много недо­статков, но альтернативы ему не было: «Малыш» требовал слишком много высокообогащённого урана, а новая модель имплозивной бом­бы - Мк.4 - ещё только разраба­тывалась.

«Толстяк», получивший в серий­ном производстве обозначение Mk.III, был доработан с точки зре­ния повышения технологичности конструкции и надёжности автома­тики. Серийные Mk.III отличались от «Толстяка» 1945 г. новыми электродетонаторами и новым, более надёж­ным блоком автоматики подрыва.

Производство Mk.III началось в апреле 1947 г. и продолжалось до апреля 1949 г. Всего было выпуще­но около 120 бомб трёх незначи­тельно отличавшихся модификаций Mod.0, Mod.1 и Mod.2. Часть из них, по некоторым данным, для эконо­мии плутония имела составное ядро из плутония и урана-235.

Серийное производство Mk.III следует считать вынужденным ре­шением. Неустойчивость на траектории была главным, но не един­ственным её недостатком. Свинцо­вые аккумуляторы имели срок служ­бы в заряженном состоянии всего девять суток. Через каждые трое суток требовалась подзарядка ба­тарей, а через девять суток - их замена, для чего нужно было раз­бирать корпус бомбы.

Из-за тепловыделения плутония, вызванного его радиоактивностью, время хранения ядерного заряда в собранном состоянии не превыша­ло десяти суток. Дальнейший нагрев мог повредить линзовые блоки ВВ и электродетонаторы.

Сборка и разборка ядерного за­ряда были очень трудоёмкими и опасными операциями, в которых были заняты 40-50 человек в тече­ние 56-76 ч. Наземное обслужи­вание бомбы Mk.III требовало мно­го нестандартного оборудования: специальных транспортировочных тележек, подъёмников, вакуумных насосов, контрольно-измерительных приборов и т.п.

Сказанного достаточно, чтобы убедиться, что Mk.III нельзя считать боевой системой оружия.

Уже весной 1949 г. началась за­мена Mk.III на новую бомбу Мк.4. В конце 1950 г. была снята с воо­ружения последняя Mk.III. Такой ко­роткий срок службы лишь недавно выпущенных изделий объясняется крайне ограниченным тогда запа­сом делящихся материалов. Плуто­ний из зарядов Mk.III мог быть ис­пользован гораздо более эффектив­но в Мк.4.

Первое испытание ядерного за­ряда плутониевой бомбы «Толстяк» состоялось в Аламогоро, пример­но в 300 км к югу от Лос-Аламоса, 16 июля 1945 г. Испытание получило кодовое наименование Trinity («Троица»). Ядерный заряд бомбы и блоки автоматики без баллистичес­кого корпуса были установлены на 30-метровой стальной башне. В радиусе 10 км были оборудованы три наблюдательных пункта, а на расстоянии 16 км - блиндаж для пункта управления.

Так как уверенности в успехе первого испытания не было, посту­пило предложение взорвать бомбу в специальном сверхпрочном контейнере, который, в случае неуда­чи, не дал бы разлететься драго­ценному плутонию. Такой контей­нер, рассчитанный на взрыв 250 т тротила, был изготовлен и достав­лен на полигон. Контейнер, полу­чивший прозвище «Дамбо», имел длину 8 м, диаметр 3,5 м и массу 220 т. Взвесив все за и против, Оппенгеймер и Гровс отказались от его использования. Решение было благоразумным, ибо осколки этого монстра при взрыве могли натво­рить бед.

Перед испытаниями многие спе­циалисты, в качестве пари, записа­ли ожидаемую мощность взрыва. Вот их прогнозы: Оппенгеймер осторожно записал 300 т тротила, Кистяковский - 1400 т, Бете - 8000 т, Раби - 18000 т, Теллер - 45000 т. Альварес записал 0 т, успокоив присутствовавших рассказом о том, что разработанная им ранее сис­тема слепой посадки сработала только с пятого раза.

Сборка и подключение автома­тики заряда были закончены Геор­гием Кистяковским и двумя его по­мощниками за полчаса до взрыва. Взрыв был произведен в 5 ч 30 мин утра. Его мощность превзошла ожидания большинства присутство­вавших. Самое эмоциональное опи­сание взрыва содержится, на наш взгляд, в докладе генерала Гровса, приведенном в книге его воспоми­наний. Более всего поразила во­ображение генерала судьба кон­тейнера «Дамбо», стоявшего в не­скольких сотнях метров от эпицент­ра. 220-тонный гигант был выворо­чен из бетонного основания и изог­нут в дугу.

Сразу после взрыва Ферми ос­мотрел из танка «Шерман» 400-мет­ровую пологую воронку, покрытую расплавленным песком. Тротиловый эквивалент взрыва составил 22±2 кт. Коэффициент использования деля­щихся материалов превысил ожи­даемый и составил 17% (напомним, у «Малыша» - всего 1,3 %). При этом примерно 80% энергии выделилось в плутониевом ядре, а 20% - в урановом отражателе нейтро­нов.

Для «технарей», которые состав­ляют большинство читателей этой статьи, приведем физическую кар­тину 20-килотонного взрыва:

При взрыве, эквивалентном 20 кт тротила, через 1 мкс радиус огнен­ной сферы, состоящей из раскалён­ных паров и газов, составляет око­ло 15 м, а температура - порядка 300000°С. Уже примерно через 0,015 с радиус увеличивается до 100 м, а температура падает до 5000-7000°С. Через 1 с огненный шар достигает максимальных раз­меров (радиус 150 м). Вследствие сильного разрежения огненный шар с большой скоростью поднимается вверх, увлекая за собой пыль с по­верхности земли. Остывая, шар превращается в клубящееся облако, имеющее характерную для ядерного взрыва грибовидную форму.

Внешне похожую картину даёт взрыв большой ёмкости с бензином, чем и пользуются для имитации ядер­ного взрыва на военных учениях.

Ещё две бомбы Mk.III были взор­ваны в 1946 г. на атолле Бикини в рамках операции Кроссроудз. Оба взрыва, воздушный и, впервые, под­водный, были проведены в интере­сах Военно-морских сил США, уже тогда начавших многолетнее сопер­ничество с ВВС за первое место в стратегических силах.

Воздействию ядерного взрыва было подвергнуто большое количе­ство боевых кораблей, в том числе 5 линкоров, 2 авианосца, 4 крей­сера и 8 подводных лодок. На испытания были приглашены наблю­датели из государств-членов ООН, в том числе из Советского Союза.

1 июля 1946 г. был проведён воз­душный ядерный взрыв «Эйбл» на высоте 400 м, а 25 июля - подвод­ный взрыв «Бейкер» на глубине 30 м. В целом боевые корабли показали высокую боевую устойчивость к ядерному взрыву. При воздушном взрыве затонули всего 5 кораблей из 77, стоявших не далее 500 м от эпицентра. При подводном взрыве основные повреждения были полу­чены при ударе кораблей днища­ми о грунт при прохождении под ними волны от взрыва. Высота вол­ны на удалении от эпицентра 300 м достигала 30 м, на удалении 1000 м - 12 м и на 1500 м - 5-6 м. Если бы взрыв происходил не на мелко­водье, повреждения были бы мини­мальными.

Результаты испытаний на Бики­ни дали повод некоторым специа­листам говорить о неэффективности ядерного оружия против соедине­ния кораблей, идущего в противоатомном ордере, на расстоянии около 1000 м друг от друга. Одна­ко это верно только в отношении ядерного взрыва относительно не­большой мощности - порядка 20 кт. Кроме того, то, что корабли остались на плаву, ещё не означа­ло сохранения их боеспособности.

B-29 - НОСИТЕЛЬ ДЛЯ ЯДЕРНОГО ОРУЖИЯ

Параллельно с организацией работ по созданию ядерного ору­жия генералу Гровсу пришлось за­думаться о его носителе. Лучший бомбардировщик американских ВВС - Боинг В-29 «Суперфортресс» - был приспособлен для подвески бомб калибром не более 1814 кг. Единственным бомбардировщиком союзников, рассчитанным на при­менение 5-тонных бомб, если не считать советского Пе-8, был анг­лийский «Ланкастер».

Англо-американское соглаше­ние о совместной разработке атом­ной бомбы не исключало, конечно, применения «Ланкастера», но Гровс был твёрдо убеждён, что в вопро­сах применения ядерного оружия Америка должна быть полностью не­зависимой даже от союзников. Про­грамма переоборудования бом­бардировщика В-29 в носитель атомной бомбы получила шифр Silverplate Project. В рамках этого проекта было оборудовано 45 са­молётов.

Основным их отличием от стан­дартного В-29 была установка в бомбоотсеке английского бом­бодержателя F, использовавшегося в RAF для подвески сверхмощной 5443-килограммовой бомбы «Толлбой». Держатель был приспособ­лен для подвески плутониевой бом­бы «Толстяк», а для крепления ура­новой бомбы «Малыш» требовался специальный переходник. С целью облегчения самолёта всё брониро­вание и оборонительное вооруже­ние, кроме кормовой установки, было снято. Дополнительно были установлены аппарату­ра контроля автомати­ки бомбы, система элек­трообогрева бомбоотсека и радиовысотомер SCR-718.

Максимальное облег­чение самолёта и уста­новка более высотных двигателей и винтов по­зволила поднять потолок В-29 до 12000 м. Слож­ная и недостаточно на­дёжная автоматика бомбы потребовала включения в экипаж бомбарди­ровщика дополнительно­го специалиста оператора бомбового вооружения.

Из-за большого диаметра «Тол­стяка» его загрузка в бомбоотсек В-29 проводилась над специальной ямой или при помощи подъёмника.

Первые 15 самолётов поступи­ли на вооружение 509-й смешан­ной авиагруппы, сформированной 9 декабря 1944 г. В состав авиа­группы входили 393-я бомбардиро­вочная эскадрилья на В-29 и 320-я транспортная эскадрилья на четы­рёхмоторных самолётах Дуглас С-54. Командиром 509-й авиагруппы был назначен 29-летний полковник Пол Тиббетс, опытнейший летчик, принимавший участие в налётах на Регенсбург и Швейфурт, а затем в испытаниях В-29.

509-я авиагруппа первоначаль­но базировалась на аэродроме Уэндовер-Филд в штате Юта. Бое­вая подготовка заключалась в от­работке прицельного высотного бомбометания одиночными авиа­бомбами большой мощности. Пос­ле сброса бомбы на высоте 10000 м самолёт выполнял резкий разво­рот на 150-160° и на форсаже со снижением уходил от точки сбро­са. За 40 с падения бомбы по баллистической траектории он удалялся от эпицентра взрыва на 16 км. По расчетам, на таком расстоянии ударная волна 20-килотонного взрыва создавала перегрузку 2g при разрушающей для конструкции В-29 перегрузке 4g. Однако об этих расчётах знал только полковник Тиббетс. Остальной личный состав считал, что массогабаритные ма­кеты бомб («Тыквы») и будут основ­ным вооружением авиагруппы.

После окончания курса боевой подготовки в Уиндовере 509-я авиа­группа была переброшена на Кубу, где тренировалась в длительных по­лётах над морем. 26 апреля 1945 г. авиагруппа полковника Тиббетса была признана готовой к боевому применению и начала перебазиро­ваться на аэродром Норд-Филд на острове Тиниан из группы Мари-

БОМБАРДИРОВКА ХИРОСИМЫ И НАГАСАКИ

Вопрос о боевом применении ядерного оружия встал уже в конце 1944 г. Создатели бомбы, полити­ческое руководство и военные то­ропились: опасались появления ядер­ного оружия у Германии, поэтому ни у кого не было сомнений, что бомбу сбросят на Германию, при­чём хорошо бы в полосе наступле­ния Советских войск... Но Герма­нии повезло - она капитулирова­ла 9 мая 1945 г. Единственным про­тивником осталась Япония.

Была создана специальная груп­па, которая выработала рекомен­дации по выбору цели для ядерной бомбардировки. Вкратце эти реко­мендации выглядят так: нужно сбро­сить по крайней мере 2 бомбы, что­бы противник подумал, что у США есть запас ядерных бомб. Цель дол­жна иметь компактную застройку, преимущественно деревянными зданиями (все японские города имели такую застройку), иметь большое военно-стратегическое значение и не подвергаться до этого налётам бомбардировочной авиации. Это позволяло точнее определить эф­фект от ядерной бомбардировки.

В качестве объектов атомной бомбардировки были выбраны че­тыре японских города, удовлет­ворявших перечисленным требова­ниям: Хиросима, Ниигата, Кокура и Киото. Впоследствии Киото - го­род-памятник, древняя столица Япо­нии, по решению военного мини­стра Стимсона, была вычеркнута из чёрного списка. Его место занял портовый город Нагасаки.

Окончательное решение о при­менении было за президентом Тру­мэном (Рузвельт к тому времени уже умер) и оно было положительным. В своих мемуарах он пишет:

«Принимать окончательное реше­ние о времени и месте применения бомбы должен был я. В этом не мо­жет быть никакого сомнения. Я счи­тал атомную бомбу средством веде­ния войны и никогда не сомневался в необходимости пустить её в ход».

Генерал Гровс по этому поводу заметил: «Трумэн не так уж много сделал, сказав да. В те времена по­требовалось бы огромное муже­ство, чтобы сказать нет».

Тем временем 509-я авиагруппа начала тренировочные полёты с ос­трова Тиниан. При этом небольшие группы по 2-3 В-29 сбрасывали массо-габаритные макеты атомной бомбы («Тыквы») на соседние с объектами будущей атомной бом­бардировки японские города. По­лёты проходили практически в по­лигонных условиях: японцы, эконо­мя горючее и боеприпасы, при по­явлении на большой высоте одиночных самолётов даже не объявляли воздушной тревоги. Личный состав авиагруппы, за исключением пол­ковника Тиббетса, считал, что эти полёты, засчитывавшиеся экипажам как боевые вылеты, и есть их рабо­та. Лётчики испытывали, правда, лёгкое разочарование, так как «Тык­вы» по всем параметрам уступали английским сверхмощным 5- и 10-тонным бомбам, а о точности при­целивания с 10-километровой вы­соты и говорить нечего. Всего было выполнено 12 таких полётов, одной из целей которых было приучить японцев к виду тройки В-29 на боль­шой высоте.

С этими полётами, возможно, связана одна легенда, о которой можно было и не говорить, если бы она не получила широкого распространения. В смутное вре­мя Перестройки в ряде изданий появилось, со ссылкой на какие-то документы из архивов внешней разведки, сенсационное утверждение, что на Японию было сброшено не две, а три атомные бомбы, но одна из них не взорвалась и попала в руки советских разведчиков. Зная, с какими трудностями и в какие сроки были получены делящиеся материалы для первых двух бомб, можно с уверенностью утверждать, что третьей бомбы не могло быть в принципе.

Бывший сотрудник посольства СССР в Токио, генерал-майор в от­ставке М.И. Иванов предполагает, что в этих документах речь идет о неразорвавшейся 250-килограммо­вой американской бомбе, упавшей вблизи советского консульства в Нагасаки. Рискнём высказать ещё одно предположение, в которое, впрочем, не очень верим сами. В ходе тренировочных полетов 509-й авиагруппы могла «не разорваться» одна из «Тыкв». «Наши люди» могли заинтересоваться бомбой необыч­ной формы, что и нашло отраже­ние в документах.

26 июля 1945 г. Уильям Парсонс на крейсере «Индианополис» дос­тавил на Тиниан урановый заряд для первой бомбы. К тому времени японский флот был уничтожен практически полностью, и капитану III ранга Парсонсу морской путь дос­тавки казался надёжнее воздушно­го. По иронии судьбы на обратном пути «Индианополис» был потоплен человекоторпедой, выпущенной одной из немногих уцелевших япон­ских подводных лодок. Заряд для плу­тониевой бомбы был доставлен по воздуху самолётом С-54. Бомбы, са­молёты и экипажи были готовы к 2 августа, но приходилось ждать улуч­шения погоды.

Первая атомная бомбардиров­ка была намечена на 6 августа 1945 г. Основная цель - Хиросима, запас­ные - Кокура и Нагасаки. Тиббетс решил вести В-29 с тактическим номером 82 сам. Командир корабля капитан Льюис должен был занять правое кресло второго пилота. Места штурмана-навигатора и штурмана-бомбардира заняли старший штурман авиагруппы ка­питан Ван Кирк и старший бомбар­дир майор Ферреби. Остальные члены экипажа - бортмеханик ст. сержант Дазенбери, радист рядо­вой Нельсон, стрелки сержант Карон и сержант Шумард, оператор РЛС сержант Стиборик - были оставлены на своих местах. Кроме них в состав экипажа входили спе­циалисты по полезной нагрузке из Лос-Аламоса - руководитель раз­работки Малыша капитан III ранга Парсонс, механик лейтенант Джеппсон и электронщик ст. лейтенант Бисер. Средний возраст экипажа не превышал 27 лет, выделялся только 44-летний Парсонс.

В операции «Сентеборд» долж­ны были участвовать семь В-29. Три самолёта выполняли роль развед­чиков погоды над Хиросимой, Кокурой и Нагасаки. В-29 полковника Тиббетса возьмёт на борт урано­вую бомбу «Малыш». Его сопровож­дают ещё две «Сверхкрепости», одна из которых сбрасывает над целью контейнер с измерительной аппаратурой, а вторая фотографи­рует результаты бомбардировки. Седьмой В-29 был заранее послан на остров Иводзима, лежащий на маршруте группы, для возможной замены одной из машин. На борту своего В-29 номер 82 Пол Тиббетс попросил написать имя своей ма­тери - Энола Гэй (Enola Gay).

В дни, предшествовавшие вылету «Энолы Гэй», на Тиниане произошло несколько катастроф при взлёте пе­регруженных В-29 других авиагрупп. Насмотревшись на то, как они взры­вались на собственных бомбах, Парсонс решил зарядить пушку «Малыша» в воздухе после взлёта. Эта операция не была предусмот­рена заранее, но сравнительно несложная конструкция «Малыша» те­оретически позволяла это сделать. После нескольких тренировок в бомбоотсеке стоящего самолёта, Парсонсу удалось, ободрав руки об острые кромки деталей и перепач­кавшись в графитовой смазке, на­учиться выполнять эту операцию за 30 мин.

5 августа, накануне вылета, Тиб­бетс собрал экипаж «Энолы Гэй» и сообщил, что ему выпала честь сбросить первую в истории атом­ную бомбу, эквивалентную по мощности примерно 20 тыс. т обычной взрывчатки. Парсонс показал фо­тографии, сделанные три недели назад в Аламогоро.

6 августа в 1 ч 37 мин стартовали три самолёта метеоразведки: В-29 «Straight Flash», «Full House» и «Yabbit III». В 2 ч 45 мин поднялась в воздух ударная тройка: «Enola Gay» с «Малышом» в бомбоотсеке, «The Great Artist» с измерительной аппаратурой и «Necessary Evil» с фотоаппаратурой. На корпусе «Ма­лыша» было написано: «За души погибших членов экипажа «Индианополиса». После взлёта Парсонс спустился в тёмный и негерметич­ный бомбоотсек, зарядил пушку бом­бы урановым снарядом и подклю­чил электродетонатор.

В 7 ч 09 мин высоко над Хироси­мой появился метеоразведчик «Стрэйт Флэш» майора Изерли. В сплошной облачности как раз над городом оказался большой просвет диаметром около 20 км. Изерли передал Тиббетсу: «Облачность мень­ше трех десятых на всех высотах. Можно идти на основную цель».

Приговор Хиросиме был подпи­сан. Это оказалось слишком силь­ным потрясением для майора Изер­ли; до конца своей жизни он так и не смог оправиться от психической трав­мы и кончил свои дни в больнице.

Полёт «Энолы Гэй» проходил на редкость спокойно. Воздушную тре­вогу японцы не объявляли, жители Хиросимы уже привыкли к пролё­там одиночных В-29 над городом. Самолёт вышел на цель с первого захода. В 8 ч 15 мин 19 с местного времени «Малыш» покинул бомбо­отсек «Сверхкрепости». «Энола Гэй» развернулась на 155° вправо и начала со снижением на полной мощности моторов уходить от цели.

В 8 ч 16 мин 02 с, через 43 с после сброса, «Малыш» взорвался на высоте 580 м над городом. Эпи­центр взрыва находился в 170 м к юго-востоку от точки прицеливания - моста Аиой в самом центре го­рода. Работа штурмана-бом­бардира была безупречной.

Хвостовой стрелок сквозь тём­ные очки наблюдал картину взры­ва и две приближавшиеся к само­лёту ударные волны: прямую и отражённую от земли. От каждой В-29 встряхивало, как от попада­ния зенитного снаряда. После 15 ч полёта все самолёты, участвовав­шие в операции Сентеборд, верну­лись на базу.

Результаты 15-килотонного взры­ва превзошли все ожидания. Город с населением 368 тыс. человек был разрушен практически полностью. Убито 78 тыс. и ранено 51 тыс. человек. По японским, более дос­товерным, данным число погибших значительно больше - 140±10 тыс. человек. Основной причиной гибе­ли людей были ожоги и, в меньшей степени, радиационное облучение.

Уничтожено 70 тыс. строений - 90% всего города. Хиросима на­всегда стала пугающим символом Третьей мировой войны, возможно, не состоявшейся только благодаря ей. Вместо описания ужасов бом­бардировки достаточно взглянуть на фотографии разрушенного атомным взрывом города.

Вторая атомная бомбардиров­ка была запланирована на 12 ав­густа, но внезапно перенесена на 9 августа. Трумэн спешил, возмож­но, он просто опасался, что Япония капитулирует раньше.

Многие историки, даже призна­вая целесообразность атомной бомбардировки Хиросимы для ус­корения окончания войны и, в ко­нечном счете, уменьшения её жертв, считают сброс второй бомбы пре­ступлением. Между 6 и 9 августа прошло так мало времени, что аме­риканцы не могли даже узнать о реакции японцев на первую бомбу. Кстати, японское правительство, по­началу не поняло, что произошло в Хиросиме. Они получили доклад, что в Хиросиме произошло что-то ужас­ное, но что это было - оставалось неизвестным. Понимание пришло поз­же.

Что касается второй бомбарди­ровки, то вероятно, помимо понят­ного желания испытать в боевых ус­ловиях бомбу более совершенно­го типа, американское руководство желало, чтобы японцы убедились: атомная бомба не одна, применять­ся они будут со всей решитель­ностью, так что с капитуляцией сле­дует поспешить. Об этом говорит любопытное послание, сброшенное с одного из самолётов сопровожде­ния в день второй атомной бом­бардировки. Оно было адресова­но профессору - физику Сагане, известному как на Западе, так и в Японии, и подписано Альваресом и другими американскими физиками. В письме американские ученые просили Сагану упот­ребить всё своё влияние, что­бы ускорить капитуляцию и из­бежать полного разрушения Японии атомными бомбами Возможно, истинными автора­ми этого послания были аме­риканские спецслужбы. Самое интересное, что оно действи­тельно было доставлено адре­сату, но к тому времени война уже закончилась.

Как бы то ни было, 9 августа 1945 г. в 3 часа утра с Тиниана стартовал В-29 со второй атом­ной бомбой - плутониевым «Толстяком».

Это был «Bock`s car» под управлением майора Суини, который во время налета на Хиросиму управлял самолётом со­провождения «The Great Artist». Место командира «The Great Artist» занял штатный командир экипажа «Bock`s car» капитан Бок, которому самолёт был обязан своим прозви­щем (игра слов: boxcar - товар­ный вагон). Конструкция «Толстяка» не допускала таких цирковых трю­ков, как сборка - разборка в по­лёте, поэтому самолёт взлетал с пол­ностью снаряжённой бомбой. Ос­новной целью была назначена Кокура, запасной - Нагасаки.

В отличие от рейда на Хироси­му, вторая атомная бомбардиров­ка проходила очень тяжело. Нача­лось с отказа бензонасоса, кото­рый делал невозможной выработ­ку 2270 л топлива из дополнитель­ного бака, подвешенного в заднем бомбоотсеке. Погода стремитель­но ухудшалась. В полёте над океа­ном исчез из видимости В-29 майо­ра Гопкинса, который должен был фотографировать результаты взры­ва. На этот случай было пре­дусмотрено 15-минутное ожи­дание у берегов Японии. Суини кружил на месте встречи, соблюдая радиомолчание, це­лый час, пока в поле зрения не появился В-29, как выяснилось, - чужой... Самолёты метеораз­ведки сообщили о хорошей по­годе как над Кокурой, так и над Нагасаки.

Так и не дождавшись Гоп­кинса, Суини повёл свой «Бокскар» на основную цель - Кокуру. Однако тем временем ве­тер над Японией изменил на­правление. Густой дым над го­ревшим после очередного налета металлургическим комбинатом Явата закрыл цель. Майор Суини сделал три захода на цель, но прицельное бомбометание было невозможно. Суини, хотя топлива было в обрез, принял решение идти на запасную цель - Нагасаки. Над ней тоже было облачно, но контуры залива всё же просматривались на экране радиолокационного прицела. От­ступать было некуда, и в 11 ч 02 мин «Толстяк» взорвался на высоте 500 м над промзоной Нагасаки пример­но в 2 км севернее точки прицели­вания.

Хотя бомба была почти вдвое мощнее «Малыша», результаты взрыва были скромнее, чем в Хиро­симе: погибли 35 тыс. человек, ра­нено 60 тыс. По японским данным, число жертв вдвое больше - 70±10 тыс. человек. Город пострадал мень­ше. Сыграла свою роль большая ошибка прицеливания и кон­фигурация города, расположенно­го в долинах двух рек, разделённых холмами.

О возвращении на базу не мог­ло быть и речи. Горючего могло хватить только до запасного аэро­дрома на Окинаве. Когда остров показался на горизонте, стрелки бензиномеров стояли уже на нулях. Выпустив фейерверк ракет, Суини сумел обратить на себя внимание. Полосу освободили, и «Бокскар» совершил посадку с прямой. На уход с полосы топлива уже не хватило...

Уже после войны стало извест­но, что японская служба радиопе­рехвата вела В-29 на всём его пути до Нагасаки. Дело в том, что не­смотря на режим радиомолчания, бомбардировщик обменивался с базой на Тиниане кодированными радиосигналами. Эти сигналы были зафиксированы японцами при пер­вом налёте на Хиросиму, а при вто­ром они позволили отслеживать путь самолёта. Однако японская ПВО уже была в таком плачевном со­стоянии, что не смогла поднять на перехват ни одного истребителя.

Чем считать атомную бомбар­дировку Хиросимы и Нагасаки: во­инским подвигом, остановившим войну, или преступлением? Конеч­но, как и в случае ночных ковровых бомбардировок городов Германии и Вьетнама, гордиться особенно нечем, да и была ли эта бомбарди­ровка необходимой?

Известно, что к весне 1945 г. пра­вящие круги Японии уже осознали, что война проиграна, и начали готовить почву для заключения перемирия на приемлемых для себя условиях. Но правительство Трумэ­на оставляло эти усилия без внима­ния, готовясь положить на стол свой главный, атомный, козырь. Потсдам­ская декларация требовала от Япо­нии, по сути, безоговорочной ка­питуляции. После Хиросимы и На­гасаки условия капитуляции были Японией приняты.

Допустим, что Америка в 1945 г. не имела бы атомного оружия. Тог­да американцам пришлось бы про­водить высадку непосредственно на Японские острова. Эта компания, по оценке некоторых экспертов, могла стоить американцам потери до 1 миллиона солдат. Японские солдаты и камикадзе уже доказали свою самоотверженность, а обще­ственное мнение Америки уже было шокировано огромными потерями на Иводзиме и Окинаве. Правда, в 1945 г. американская бомбардиро­вочная авиация была уже в состо­янии сравнять с землей все японс­кие города и промышленные пред­приятия с помощью обычных бомб, но это обернулось бы гораздо боль­шим количеством жертв среди мир­ного населения, чем в Хиросиме и Нагасаки.

Таким образом, отказавшись от применения атомного оружия, аме­риканское руководство вынуждено было либо принять японские усло­вия перемирия, либо продолжать утюжить японские города, приумно­жая число жертв.

На наш взгляд, самое большое влияние ужасная судьба Хиросимы и Нагасаки оказала на ход после­военной истории. Вид этих японс­ких городов, мы думаем, не раз вставал в воображении Сталина, Эйзенхауэра, Хрущева и Кеннеди, так и не дав 45-летней Холодной войне перерасти в Третью мировую...

Подготовка к применению ядер­ного оружия продолжалась и пос­ле Хиросимы и Нагасаки. По утвер­ждению Гровса, третья плутониевая бомба могла быть готова после 13 августа, другие источники называ­ют значительно более поздние сро­ки - не ранее осени 1945 г. Так или иначе, при планировании воз­можной высадки на Японские ост­рова осенью 1945 г. Комитет на­чальников штабов США планиро­вал использование девяти атомных бомб. Трудно сказать, насколько эти планы были реальными. Капитуля­ция Японии резко затормозила все работы - к концу года имелось в наличие всего две бомбы.

Оба атомных бомбардировщи­ка, «Enola Gay» и «Bockscar», со­хранились до наших дней. Первый выставлен в экспозиции Националь­ного музея авиации и космонавти­ки в Вашингтоне, второй - в музее ВВС США на авиабазе Райт-Паттерсон в штате Огайо.

(К. Кузнецов, Г. Дьяконов, «Авиация и космонавтика»)

Точку во Второй мировой войне поставили США, а именно президент Гарри Трумэн, в тот момент, когда атомная бомба, сброшенная на Хиросиму, взорвалась над головами тысяч японцев.

Этому трагическому событию и одновременно большому технологическому прорыву, предшествовали годы исследований, работа сотен выдающихся ученых и техников по всему миру, десятки жизней, которые были потеряны в результате воздействия радиации.

И только по воле случая, первыми, кто сумел применить результат исследований в области атомной энергии в качестве оружия, стали американцы. Хиросима, Нагасаки, ядерная бомба – эти слова стали практически синонимами, когда мы говорим об оружии массового уничтожения. Новое оружие, символ гонки вооружений – атомная бомба на Хиросиму и Нагасаки принесла только боль и смерть.

Что же собой представляла атомная бомба (Хиросима), созданная для уничтожения человеческих жизней, с таким милым названием «Little Boy» (анг. малыш)? Кто был создателем этого инновационного оружия, примененного на японских городах Хиросима и Нагасаки? Мощность бомбы, ее характеристики – вот вопросы, ответы на которые мы постараемся дать в этой статье.

Атомная бомба Хиросима. С чего все началось?

На рубеже 1938 и 1939 годов был открыт факт деления ядра урана и определена критическая масса изотопа урана-235. В те годы научные круги разных стран плотно сотрудничали, но нарастающее напряжение в мире поставило под вопрос совместные исследования.

В США также интересовались данной темой. Физики мирового масштаба Юджин Вигнер и Лео Силард написали письмо Франклину Рузвельту от имени Эйнштейна. В нем сообщалось, что фашистская Германия ведет исследования, в результате которых будет сделана бомба невероятной силы. В связи с этим, авторы письма призвали американского президента ускорить накопление урановой руды и увеличить финансирование проектов по атомной энергии, так как в США должна быть сделана первая в мире атомная бомба. Хиросима и Нагасаки скоро станут полигоном для испытания ее мощности.

Американское правительство экстренно принимает необходимые меры. Исследовательский урановый комитет переформатируется, и 17 сентября 1943 года открывается секретная программа «Проект Манхеттен». Уже очень скоро будет создана атомная бомба. Хиросима испытает ее действие на себе. Для исследований, руководили которыми полковник Лесли Гровс и Роберт Оппенгеймер (научная часть), были приглашены ученые-физики со всех уголков мира, люди вычислители, техники и другие специалисты. Многие из них были беженцами из фашистской Германии.

Всего в проекте, в результате которого будет сброшена ядерная бомба на Хиросиму, приняло участие около 130 тысяч сотрудников. Среди них больше десятка лауреатов Нобелевской премии.

Рождение «Малыша»

Изотоп урана 235 в руде естественного происхождения содержится в количестве всего 0,7%.

Для получения необходимого для преодоления критической массы в 10 кг количества урана-235 Национальная лаборатория в Ок-Ридж разработала способы обогащения руды, а сырье для изготовления урановой бомбы «Малыш» добывалось из нескольких месторождений:

  • Бельгийское Конго (территория современной Демократической Республики Конго в Центральной Африке);
  • Большое Медвежье Озеро в Канаде;
  • Штат Колорадо (США).

Существует предположение, что половина мирового запаса урана, находящаяся в Бельгийском Конго, до конца 30-х годов была скуплена Францией. На базе отлично оснащенной лаборатории в Колеж де Франс европейские ученые не успели довести исследования до конца, так как Франция в 1940 году пала. После, запасы урана были вывезены в США.

ВАЖНО ЗНАТЬ:

Над проектом создания атомного оружия в Штатах работал большой коллектив ученых, но его «отцом» принято считать Отто Опенгеймера. Если бы не его гений, ядерная бомба на Хиросиму не упала бы, и исход Второй мировой войны был бы иным. Позже он будет активно выступать против применения атомного оружия. Опенгеймер будет всеми силами стараться, чтобы не повторилась «новая Хиросима», бомба подобного типа не была сброшена.

В основу механики взрыва бомбы легла пушечная система. Ее разработчиком был Уильям Парсон. Это довольно простой принцип. Две части, имеющие докритическую массу, на определенной скорости соединяются, и происходит взрыв. Но, даже достигнув критической массы, при которой происходит детонация урана, два куска этого радиоактивного материала не имели бы разрушительной силы. Необходимо было обеспечить плотную оболочку, которая бы препятствовала «выветриванию» нейтронов.

Первый, не протестированный образец – урановая бомба (Хиросима; Нагасаки получил уже опробованную на полигонах плутониевую бомбу) «Малыш», после набора необходимого количества радиоактивного наполнителя, был сброшен на город Хиросима. Бомба обладала достаточно низким КПД заряда, но его было достаточно, чтобы унести сотни тысяч человеческих жизней.

Что представляла собой сброшенная на город Хиросима бомба?

Взорванная бомба в Хиросиме несла в себе 64 килограмма обогащенного до 80% урана-235. Из них 25 кг приходилось на «мишень», а остальная масса на «пулю», которая двигалась в орудийном стволе диаметром 76,2 мм со скоростью 300 м/с от взрыва порохового заряда.

Чтобы мощность бомбы в Хиросиме удовлетворяла требованиям по разрушительной силе, понадобилось более 12 тонн урановой руды, которую в течение полутора месяцев непрерывной работы обогащал промышленный гигант в Ок-Ридж. Длинна «Малыша» составляла 3 м 20 см, диаметр – 71 см. Массивный корпус, выполненный из тяжелой легированной стали, стандартный для американских авиабомб того периода громоздкий хвост, плюс остальная оснастка дали в общей сложности вес в 4090 кг, направляющихся на город Хиросима. Мощность бомбы должна была быть достаточной для массового разрушения.

Благодаря удлиненности и передней центровке, авиабомба имела стойкую траекторию, и как следствие высокую точность попадания. Мощность атомной бомбы сброшенной на Хиросиму составила 18 килотонн в тротиловом эквиваленте. В будущем, мощность бомбы сброшенной на Хиросиму, окажется чрезвычайно малой. Атомное оружие будущих поколений имеет гораздо более высокие показатели разрушительной силы.
Мощность бомбы сброшенной на Хиросиму была обусловлена не только количеством уранового заряда, но и дополнительной механикой.

Перед техниками стояли задания:

  • В эксплуатации атомная бомба (Хиросима) должна быть безопасной, несанкционированная детонация недопустима;
  • сделать так, чтобы падающая бомба на Хиросиму взорвалась на высоте 500 – 600 метров над землей;
  • если что-то пойдет не по плану, и бомба на Хиросиму упадет не взорвавшись, должна произойти самоликвидация заряда, чтобы технологии не достались врагу.

Для этих целей были разработаны четыре основные системы:

  • Высотомеры Арчи, разработанные для ВВС США, обеспечивали детонацию бомбы на нужной высоте, причем достаточно было 2-х показателей из 4-х имевшихся. Интересным фактом является то, что чувствительные антенны высотомеров нельзя было снять с бомбы и заново установить. Поэтому всей американской авиации над японскими островами в дни, когда атомная бомба на Хиросиму и Нагасаки были в пути, запрещалось создавать радиопомехи.
  • Барометрический предохранитель и таймер служили для предотвращения непредусмотренного самовзрывания. Предохранитель не позволял срабатывать взрывным цепям на высотах более 2135 м. Таймер блокировал в течении 15 с после сброса бомбы барометрические данные, отраженные от самолета-носителя.
  • Блок автоматики при срабатывании высотомеров запускал детонатор пушечной системы уранового заряда.
  • На случай непредвиденных неисправностей, если над городом Хиросима бомба не взорвется, сработает обычный взрыватель при ударе об землю.

Сброшенная атомная бомба на Хиросиму и Нагасаки. В чем разница?

Сброшенная на город Хиросима бомба на основе урана, для производства была крайне дорогая. «Проект Манхеттен» параллельно проводил разработку бомбы на основе плутония-239 (сильно радиоактивного). Ядерная бомба Хиросима была, как уже говорилось выше, пушечного типа, для плутония нужно было другое решение.Сфера плутониевого заряда в оболочках, была окружена 64-мя детонаторами. Все это было помещено в металлический шар. Детонация внутри сферы, увеличивая плотность плутония до критической, вызывая взрыв. Механика была такая же, какую несла атомная бомба (Хиросима) «Малыш».

Мощность атомной бомбы в Хиросиме была значительно ниже. «Толстяк», предназначенный для Нагасаки, имел мощность 22 килотонны в тротиловом эквиваленте. Но разрушений он принес гораздо меньше из-за неточности прицеливания и конфигурации города.

Сброшенная ядерная бомба на Хиросиму и Нагасаки должна была заставить Японию капитулировать. США добились своего ценой тысяч мгновенно отобранных в атомном огне жизней, болезней и страданий еще многих тысяч человек в городах Хиросима, Нагасаки. Атомная бомба использованная в Японии обусловила конец Второй мировой войны и положила начало Холодной войне и веку ядерной энергии.

По некоторым сведениям, могла существовать еще одна атомная бомба. Хиросима и Нагасаки стали первыми в списке жертв. Мощность бомбы (на Хиросиму пришлось порядка 15 – 18 килотонн), которая могла стать третьей, была в разы выше. Но по неизвестным нам причинам, ее след утерян.


60 лет назад — 29 августа 1949 года — на Семипалатинском полигоне произошло успешное испытание первой советской атомной бомбы РДС-1 с заявленной мощностью 20 кт. Благодаря этому событию в мире, как утверждалось, был установлен стратегический военный паритет между СССР и США . И гипотетическая война с катастрофическими для Советского Союза последствиями реализовалась в своем холодном агрегатном состоянии.

По стопам проекта «Манхэттен»

У Советского Союза (как, впрочем, и у Германии) были все основания стать лидером в ядерной гонке . Этого не случилось из-за той большой роли, которую наука играла в идеологии новой власти. Руководство коммунистической партии, следуя заветам бессмертного труда «Материализм и эмпириокритицизм» , с тревогой следило за расцветом «физического идеализма». В 30-е годы Сталин был склонен доверять не тем физикам, кто утверждал, что при помощи некой цепной реакции в изотопах тяжелых элементов можно выделять громадную энергию, а тем, кто отстаивал в науки материалистические принципы.

Правда, о возможностях военного применения энергии атомного ядра советские физики заговорили только в 1941 году. Георгий Николаевич Флеров (1913-1990), который перед войной в лаборатории Игоря Васильевича Курчатова (1903-1960) работал над проблемой цепной реакции деления ядер урана, а затем служил лейтенантом в ВВС, дважды посылал Сталину письма, в которых сожалел о «большой ошибке» и о «добровольной сдаче завоеванных до войны позициях в исследованиях по ядерной физике». Но — тщетно.

Лишь в сентябре 1942 года, когда из разведданных стало известно о развертывании возглавляемого Робертом Оппенгеймером (Julius Robert Oppenheimer , 1904-1967) американского проекта «Манхэттен», выросшего из деятельности англо-американской Урановой комиссии, Сталин подписал постановление «Об организации работ по урану». Оно предписывало АН СССР «возобновить работы по исследованию осуществимости использования атомной энергии путем расщепления урана и предоставить ГКО к 1 апреля 1943 г. доклад о возможности создания урановой бомбы или уранового топлива».

Новости партнёров

Первые атомные бомбы - Little Boy и Fat Man
В ходе создания атомного оружия в рамках манхэттенского проекта одновременно велись работы по созданию двух ядерных бомб - урановой и плутониевой.

После проведения испытания первого ядерного заряда "Gadget" (прототипа плутониевой бомбы "Толстяк" - FatMan) следующим, готовым к применению был урановый "Малыш" (LittleBoy). Именно он и оказался сброшенным на Хиросиму 6 августа 1945. Изготовление еще одного "Малыша" потребовало бы месяцев накопления урана, поэтому второй сброшенной бомбой стал "Толстяк", собранный на острове Тиниан незадолго до своего использования.

Первоначальная сборка Fat man"а происходила на базе ВМФ Солтвеллс, Калифорния. Окончательная же досборка и установка плутониевого ядра была произведена на острове Тиниан (Tinian), в Тихом океане, где и завершилась постройка первого боевого плутониевого заряда. Второй после Хиросимы удар изначально должен был бы быть нанесен по Кокуре (Kokura), через несколько дней после первой атаки, однако из-за погодных условий бомбардировке подвергся город Нагасаки.

Урановая атомная бомба Little Boy.
Урановый заряд в бомбе состоит из двух частей: мишени и снаряда. Снаряд диаметром 10 и длинной 16 сантиметров представляет собой набор из шести урановых колец. В нем содержится около 25.6 кг - 40% всего урана. Кольца в снаряде поддерживаются диском из карбида вольфрама и стальными пластинами и находятся внутри стального корпуса. Мишень имеет массу 38.46 кг и сделана в форме полого цилиндра диаметром 16 см и длиной 16 см. Конструктивно она выполнена в виде двух отдельных половинок. Мишень вмонтирована в корпус, служащий отражателем нейтронов. В принципе, использованное в бомбе количество урана дает критическую массу и без отражателя, однако его наличие, как и изготовление снаряда из более обогащенного урана (89% U-235) чем мишень(~80% U-235), позволяет увеличить мощность заряда.

Процесс обогащения урана происходил в 3 этапа. Вначале на термодиффузионной установке происходило обогащение природной руды (0.72% урана) до 1-1.5%. Далее следовали газовая диффузионная установка и последняя стадия - электромагнитный сепаратор, на котором уже производилось разделение изотопов урана. Для производства "малыша" потребовалось 64 кг обогащенного урана, что составляет ~2.5 критические массы. К лету 1945 года было накоплено около 50 кг 89%-ного U-235 и 14 кг 50%-ного. В итоге, общая концентрация составила ~80%. Если сравнить эти показатели с плутониевым ядром, масса Pu-239 в котором составила всего ~6 килограммов, содержащих в себе примерно 5 критических масс, становится виден главный недостаток урановго проекта: трудность обеспечения высокой надкритичности делящегося вещества, вследствие чего низкую эффективность оружия.
Для предотвращения случайного возникновения цепной реакции в мишени содержится боровая заглушка, а снаряд вложен в боровую оболочку. Бор является хорошим поглотителем нейтронов, таким образом увеличивается безопасность при перевозке и хранении снаряженного боеприпаса. Когда снаряд достигает цели, его оболчка отлетает, а заглушка в мишени выбрасывается из нее.
Собранная оболочка бомбы состоит из корпуса из карбида вольфрама (служащим отражателем нейтронов), окруженного стальной рубашкой диаметром примерно 60 см. Общая масса такой конструкции - около 2.3 т. В просверленное в рубашке отверстие установлен карбидный корпус, в который вмонтирована мишень. В днище этого отверстия могут находится один или несколько бериллиево-полониевых инициаторов. Ствол, по которому перемещается урановый снаряд прочно крепится на резьбе к стальному корпусу мишени,
позаимствован он от 75-мм зенитного орудия и расточен по размеру снаряда до 100 мм. Длина ствола составляет примерно 2 м, масса - 450 кг, а казенной части - 34 кг. В качестве метательного взрывчатого вещества используется бездымный порох. Скорость движения снаряда в стволе достигает около 300 м/с, для приведения его в движение требуется действие силы не менее 300 кН.

Little Boy был чрезвычайно небезопасной в хранении и транспортировке бомбой. Детонация, пусть даже и случайная, метательного взрывчатого вещества (приводящего в движение снаряд), вызывает ядерный взрыв. По этой причине воздушный наблюдатель и специалист по вооружению С. Парсонс принял решение загрузить порох в бомбу только после взлета. Впрочем, при достаточно сильном ударе при падении снаряд может прийти в движение и без помощи пороха, что способно привести к взрыву от нескольких тонн до полной мощности. Little Boy представляет опасность и при попадании в воду. Уран, находящийся внутри - несколько критических масс в общей сложности, разделен воздухом. При попадании внутрь воды, она может сыграть роль посредника, приводя к цепной реакции. Это приведет к быстрому расплавлению или небольшому взрыву с выбросом большого количества радиоактивных веществ.

Сборка и применение Little Boy.
Первые компоненты снаряда были закончены в Лос-Аламосе 15 июня 1945, полностью же они были изготовлены к 3 июля.
14 Июля Little Boy и урановый снаряд к нему были отгружены на судно "Индианаполис" и 16 числа отправились на о. Тиниан, Марианские о-ва. Корабль прибыл на остров 26 июля.
24 Июля было закончено изготовление мишени для бомбы и 26-го эти компоненты были отправлены тремя самолетами C-54 из Альбукерке и прибыли на Тиниан 28-го.
31 Июля мишень со снарядом установлены внутрь бомбы. Ядерная атака намечена на следующий день, 1 августа, но приближающийся тайфун заставил перенести операцию на 5 дней.
5 Августа бомба загружается в B-29 №82 "Enola Gay".
6 Августа:
00:00 Последнее совещание, цель - Хиросима. Пилот - Тиббетс (Tibbets), 2-й пилот - Льюис (Lewis).
02:45 Бомбардировщик взлетает.
07:30 Бомба полностью готова к сбросу.
08:50 Самолет летит над японским островом Сикоку.
09:16:02 Little Boy взрывается на высоте 580 м. Мощность взрыва: 12-18 кт, по поздним оценкам - 15 кт (+/- 20%).
При такой мощности взрыва та высота, на которой он был подорван, оптимальна для давления ударной волны 12 psi (фунтов/квадратный дюйм), т.е. для максимизации области, подвергнутой давлению 12 psi или большему. Для разрушения зданий города достаточно давления в 5 psi, чему соответствует высота ~860, таким образом, при установки такой высоты жертвы и разрушения могли бы быть еще большими. Из-за неясности в определении мощности и большого количества причин, могущих вызвать уменьшение мощности взрыва высота выбиралась умеренно низкой, как в случае с маленьким по силе зарядом. Высота в 580 м оптимальна для взрыва в 5 кт.

Плутониевая атомная бомба Fat Man. Ядро бомбы представляет собой набор вложенных друг в друга сфер. Здесь они перечисляются в порядке вложенности, приведены размеры для внешних радиусов сфер:

  • взрывчатая оболочка - 65 см,
  • "толкатель"/поглотитель нейтронов - 23 см,
  • урановый корпус/отражатель нейтронов - 11.5 см,
  • плутониевое ядро - 4.5 см,
  • бериллиево-полониевый нейтронный инициатор - 1 см.

    Нейтронный инициатор.
    Первая ступень - нейтронный инициатор, называемый также Урчин (Urchin), представляет собой бериллиевую сферическую оболочку, диаметром 2 см и толщиной 0.6 см. Внутри нее находится бериллиевый вкладыш диаметром 0.8 см. Общий вес конструкции составляет около 7 граммов. На внутренней поверхности оболочки проделано 15 клиновидных щелей, глубиной 2.09 мм. Сама оболочка получена горячим прессованием в атмосфере карбонильного никеля, поверхность ее и внутренней сферы покрыта слоем никеля и золота. На внутренней сфере и щелях в оболочке осаждено 50 кюри полония-210 (11 мг). Слои золота и никеля предохраняют бериллий от альфа-частиц, испускаемых полонием либо окружающим инициатор плутонием. Инициатор закреплен на кронштейне внутри полости диаметром 2.5 см в плутониевом ядре.
    Урчин активизируется при достижении ударной волны центра заряда. Когда ударная волна достигает стенок внутренней полости в плутонии, ударная волна из испарившегося плутония воздействует на инициатор, сминая щели с полонием и создавая эффект Манро (Munroe) - сильные струи вещества, которые быстро смешивают полоний и бериллий из внешней и внутренней сфер. Альфа-частицы, испускаемые Po-210, поглощаются атомами бериллия, которые в свою очередь и испускают нейтроны.

    Плутониевый заряд.
    Девятисантиметровая сфера, с полостью в центре размером 2.5 см для нейтронного инициатора. Данную форму заряда предложил Роберт Кристи (Robert Christy) для уменьшения ассиметрии и нестабильности при имплозии.
    Плутоний в ядре стабилизирован в дельта-фазе с низкой плотностью (плотность 15.9) при помощи сплавления его с 3% галлия по количеству вещества (0.8% по массе). Преимущества использования дельта-фазы по сравнению с более плотной альфа-фазой (плотность 19.2) состоят в том, что дельта-фаза ковкая и податливая, в то время как альфа-фаза ломкая и хрупкая, кроме того, стабилизация плутония в дельта-фазе позволяет избежать усадки при охлаждении и деформации заготовки после литья или горячей обработки. Может показаться, что использование для ядра материала с более низкой плотностью может быть невыгодным, так как применение более плотного материала предпочтительнее из-за повышения эффективности и снижения количества требуемого плутония, но это оказывается не совсем так. Дельта-стабилизированный плутоний подвергается переходу в альфа-фазу при относительно низком давлении в десятки тысяч атмосфер. Давление в несколько миллионов атмосфер, возникающее при имплозионном взрыве совершает этот переход наряду с остальными явлениями, возникающими при таком сжатии. Таким образом, с плутонием в дельта-фазе происходит большее увеличение плотности и больший ввод реактивности, чем это происходило бы в случае с плотной альфа-фазой.

    Ядро собрано из двух полусфер, вероятно первоначально отлитых в заготовки, а затем обработанных при помощи горячего прессования в атмосфере карбонильного никеля. Так как плутоний химически очень активный метал, а, кроме того, представляющий опасность для жизни, каждая полусфера покрыта слоем никеля (либо серебра, как сообщалось для ядра Gadget"а). Это покрытие создало неприятность с ядром Gadget"а, так как быстрое гальванопокрытие плутония никелем (или серебром) привело к образованию раковин в металле и непригодности его к использованию в ядре. Бережная шлифовка и наслаивание слоев золота восстановили полученные полусферами дефекты. Тем не менее, тонкая золотая прослойка (около 0.1 мм толщиной) между полусферами была в любом случае необходимой частью проекта, служащая для предотвращения преждевременного проникновения струй ударной волны между полусферами, что могло бы преждевременно активизировать нейтронный инициатор.

    Урановый корпус/отражатель нейтронов.
    Плутониевый заряд окружен корпусом из природного урана массой 120 кг и диаметром 23 см. Этот корпус образует семи сантиметровый слой вокруг плутония. Толщина урана обусловлена задачей сохранения нейтронов, так, слоя в несколько сантиметров достаточно для обеспечения торможения нейтронов. Более толстый корпус (превышающий по толщине 10 см) дополнительно обеспечивает значительное сохранение нейтронов для всей конструкции, однако, эффект "временного поглощения" присущий быстрым, экспоненциально развивающимся цепным реакциям уменьшает выгоды от использования более толстого отражателя.
    Около 20% энергии бомбы выделяется за счет быстрого деления уранового корпуса. Ядро и корпус образуют вместе минимально подкритическую систему. Когда при помощи имплозионного взрыва происходит сжатие сборки до 2.5 раз по сравнению с обычной плотностью, ядро начинает содержать около четырех-пяти критических масс.

    "Толкатель"/поглотитель нейтронов.
    Окружающий уран слой алюминия, толщиной 11.5 см весит 120 кг. Основное назначение этой сферы, называемой "толкателем", состоит в уменьшении действия тейлоровой волны, быстрого понижения давления, происходящего позади детонационного фронта. Эта волна имеет тенденцию возрастать при имплозии, вызывая все более и более быстрое падение давления при схождении детонационного фронта в одну точку. Частичное отражение ударной волны происходящее на границе раздела взрывчатка (композиция "Б")/алюминий (вследствие различия плотностей: 1.65/2.71) отправляет вторичный фронт обратно во взрывчатку, подавляя тейлорову волну. Это усиливает давление прошедшей волны, увеличивая сжатие в центре ядра.
    Алюминиевый "толкатель" содержит в себе и долю бора. Так как сам по себе бор хрупкое неметаллическое вещество, трудное в применении, весьма вероятно, что он содержится в форме удобного в обработке сплава с алюминием, называемого боракс (35-50% бора). Хоть общая его доля в оболочке невелика, бор играет роль поглотителя нейтронов, предотвращая попадание обратно в плутониево-урановую сборку вылетающих оттуда нейтронов, замедлившихся в алюминии и взрывчатке до тепловых скоростей.

    Взрывчатая оболочка и детонационная система.
    Взрывчатая оболочка представляет собой слой бризантного взрывчатого вещества. Ее толщина около 47 см, а масса по меньшей мере 2500 кг. Эта система содержит 32 взрывные линзы, 20 из которых шестиугольные, а 12 - пятиугольные. Линзы соединяются вместе по образцу футбольного мяча, образуя сферическую взрывчатую сборку, около 130 см диаметром. Каждая имеет 3 части: две из них сделаны из взрывчатого вещества (ВВ) с большой скоростью детонации, одна - с низкой. Самая крайняя часть быстродетонирующего ВВ имеет конусообразное углубление, заполненное ВВ с низкой скоростью детонации. Эти сопряженные части формируют действующую линзу, способную создавать круглую, растущую ударную волну, направленную в центр. Внутренняя сторона быстродетонирующего ВВ почти что покрывает алюминиевую сферу для усиления сходящегося удара.
    Линзы изготавливались точным литьем, так что взрывчатка должна была быть расплавлена перед использованием. Основным быстродетонирующим ВВ была "композиция Б", смесь 60% гексагена (RDX) - очень быстродетонирующее, но плохо плавящееся бризантное ВВ, 39% тротила (TNT) - хорошо взрывающееся и легко плавящееся ВВ и 1% воска. "Медленным" ВВ был баратол - смесь тротила и нитрата бария (доля тола обычно 25-33%) с 1% воска в качестве связующего вещества.
    Состав и плотность линз точно контролировались и оставались неизменными. Линзовая система подгонялась с очень малым допуском, так что ее части соединялись друг с другом с точностью менее 1 мм, для избежания неоднородностей в ударной волне, но выравнивание поверхности линз было даже более важно, чем подгонка их друг к другу.
    Для получения очень точной синхронизации детонаторов, у стандартных детонаторов отсутствовали комбинации первичных/вторичных ВВ и имелись электрически нагреваемые проводники. Эти проводники представляют собой отрезки тонкой проволоки, которые моментально испаряются от броска тока, полученного от мощного конденсатора. Происходит подрыв взрывчатого вещества детонатора. Разряд конденсаторной батареи и испарение проволоки у всех детонаторов может быть произведено практически одномоментно - разница составляет +/-10 наносекунд. Обратная сторона такой системы - необходимость в больших батареях, высоковольтном источнике питания и мощного банка конденсаторов (называемого X-Unit, около 200 кг весом), предназначенных для одновременного срабатывания 32 детонаторов.
    Готовая взрывчатая оболочка помещается в корпус из дюралюминия. Конструкция корпуса состояла из центрального пояса, собранного из 5 обработанных дюралевых отливок, и верхней и нижней полусфер, образующих законченную оболочку.

    Конечная стадия сборки.
    Финальный проект бомбы предусматривает особую "крышку", через которую в конце закладываются делящиеся материалы. Заряд может быть изготовлен целиком, за исключением вставки плутония с инициатором. В целях безопастности, сборка завершается непосредственно перед практическим применением. Удаляется дюралевая полусфера вместе с одной из взрывных линз. Нейтронный инициатор устанавливается между плутониевыми полусферами и крепится внутри 40-килограмового уранового цилиндра и, затем, вся эта конструкция вкладывается внутрь уранового отражателя. Линза возвращается на свое место, к ней подключается детонатор, сверху прикручивается на свое место крышка.
    Fat Man представлял серьезную опасность в плане доставки и хранения в готовом к использованию состоянии, правда, даже в самом наихудшем случае опасность была все же меньшая, чем у Little Boy. Критическая масса ядра с урановым отражателем составляет 7.5 кг плутония для дельта-фазы, и только 5.5 кг для альфа-фазы. Любая случайная детонация взрывной оболочки может приводить к сжатию 6.2-килограмового ядра Fat Man"а в надкритическую альфа-фазу. Предполагаемая мощность взрыва от такого несанкционированного срабатывания заряда будет составлять от десятков тонн (грубо говоря на порядок больше, чем заряд взрывчатки в бомбе) до пары-другой сотен тонн тротилового эквивалента. Но главная опасность кроется от потока проникающей радиации во время взрыва. Гамма-лучи и нейтроны, могут стать причиной смерти или тяжелого заболевания намного дальше зоны распространения ударной волны. Так, небольшой ядерный взрыв в 20 тонн вызовет смертельную дозу облучения в 640 бэр на расстоянии 250 м.
    Перевозка Fat Man"а из соображений безопасности никогда не осуществлялась в полностью собранном виде, бомбы завершали непосредственно перед применением. В следствии сложности оружия на этот процесс требовалось по меньшей мере пара дней (с учетом промежуточных проверок). Собранная бомба не могла долго находится в работоспособном состоянии из-за разряда батарей X-Unit"а.
    Очертания боевой плутониевой бомбы в основном состоят из конструкции экспериментального Gadget"а, упакованного в стальную оболочку. Две половины стального эллипсоида крепятся к бандажу взрывной системы вместе с X-Unit"ом, батареями, предохранители и пусковая электроника размещены на передней стороне оболочки.
    Как и в Little Boy, высотным запалом в Fat Man"е служит радиолокационная дальномерная система "Атчис" (Archies - ее антенны можно видеть сбоку на фотографиях Little Boy"я). При достижении зарядом нужной высоты над землей (установлена на 1850+-100 футов) она выдает сигнал к детонации. Кроме него, бомба оснащена еще и барометрическим датчиком, предотвращающим взрыв выше 7000 футов.

    Боевое применение плутониевой бомбы.
    Окончательная сборка Толстяка проходила на о. Тиниан.
    26 Июля 1945 плутониевое ядро с инициатором отправлено на самолете C-54 с авиабазы Киртлэнд на Тиниан.
    28 Июля ядро прибывает на остров. В этот день три B-29 отправляются из Киртлэнда на Тиниан с тремя предварительно собранными Fat Man"ами.
    2 Августа - прибытие B-29. Дата бомбардировки определена как 11 августа, цель - арсенал в Кокуре. Не-ядерная часть первой бомбы оказалась готова к 5 августа.
    7 Августа приходит прогноз о неблагоприятных для полета 11 числа метеоусловиях, дата полета сдвигается на 10, затем - на 9 августа. Из-за сдвига даты, ведутся ускоренные работы по сборки заряда.
    8-го утром сборка Fat Man"а завершается, к 22:00 он загружен в B-29 "Block"s Car".
    9 Августа:
    03:47 Самолет взлетает с Тиниана, цель определена как Кокурский арсенал. Пилот - Чарльз Свини (Charles Sweeney).
    10:44 Время подлета к Кокуре, но цель невидна в условиях плохой видимости. Огонь зенитной артиллерии и появление японских истребителей вынуждают прекратить поиски и повернуть в сторону запасной цели - Нагасаки.
    Над городом оказался слой облачности - как и над Кокурой, горючего оставалось только на один заход, поэтому бомба была сброшена в первый подходящий просвет в облаках в нескольких милях от назначенной цели.
    11:02 Происходит взрыв на высоте 503 м вблизи границы города, мощность по данным измерений 1987 года - 21 кт. Несмотря на то, что взрыв произошел на границе населенной части города, число жертв превысило 70 000 человек. Были разрушены и оружейные производства Мицубиси.

    Актуальность важнейшей задачи, поставленной перед специальной лабораторией атомного ядра (с марта 1943 г. - Лабораторией № 2), - проведение необходимых исследований и представление в ГКО доклада "о возможности создания урановой бомбы или уранового топлива ", - усиливалась тем, что разведывательная информация 1941 г., что отмечал, как уже говорилось выше, И.В. Курчатов в своём письме от 27 ноября 1942 г. на имя В.М. Молотова, не содержала исчерпывающего ответа на вопрос о возможности создания урановой бомбы.

    В то же время экспериментальная и теоретическая базы, которыми располагала Лаборатория № 2 в первой половине 1943 г., да и в относительно длительный последующий период, были недостаточными для того, чтобы дать определённый ответ на вопрос о реальности атомной бомбы только на основании собственных экспериментальных и теоретических данных.

    Однако продолжавшие поступать разведывательные материалы, в том числе материалы, которыми И.В. Курчатов располагал уже к весне 1943 г., по существу не оставляли у него сомнений в осуществимости бомбы из урана-235. Из уже упоминавшегося выше отзыва И.В. Курчатова от 4 июля 1943 г. на поступивший по каналам разведки перечень американских работ по проблеме урана следует, что его беспокоила уже не сама возможность создания бомбы из урана-235, а озабоченность вызывали противоречия в данных различных работ по сечениям деленияурана-235 в области средних энергий нейтронов. И.В. Курчатов отмечал: "Вопрос этот имеет кардинальное значение, так как от величины сечения деления в этой области крайне резко зависят размеры бомбы из урана-235 и самая возможность осуществления котла из металлического урана " .

    Весной 1943 г. И.В. Курчатову стала принципиально ясной и новая возможность конструирования атомной бомбы. В записке на имя М.Г. Первухина от 22 марта 1943 г. И.В. Курчатов писал: "В материалах, рассмотрением которых занимался в последнее время… указано, что, может быть, продукты сгорания ядерного топлива в "урановом котле" могут быть использованы вместо урана-235 в качестве материала для бомбы. Имея в виду эти замечания, я внимательно рассмотрел последние из опубликованных американцами в "Physical Review" работ по трансурановым элементам (эка-рению-239 и эка-осьмию-239) и смог установить новое направление в решении всей проблемы урана… ". Речь шла об использовании в атомной бомбе плутония-239, который И.В. Курчатов называл в своём письме эка-осьмием-239. Он писал, что "перспективы этого направления необычайно увлекательны ". "По всем существующим сейчас теоретическим представлениям попадание нейтрона в ядро эка-осьмия должно сопровождаться большим выделением энергии и испусканием вторичных нейтронов, так что в этом отношении он должен быть эквивалентен урану-235". "Если в действительности эка-осьмий обладает такими же свойствами, каки уран-235, его можно будет выделить из "уранового котла" и употребить в качестве материала для эка-осьмиевой бомбы. Бомба будет сделана, следовательно, из "неземного" материала, исчезнувшего на нашей планете .

    Как видно, при таком решении всей проблемы отпадает необходимость разделения изотопов урана, который используется и как топливо, и как взрывчатое вещество ".

    "Разобранные необычайные возможности, конечно, во многом ещё не обоснованы. Их реализация мыслима лишь в том случае, еслиэка-осьмий-239 действительно аналогичен урану-235 и если, кроме того, так или иначе может быть пущен в ход "урановый котёл". Кроме того, развитая схема нуждается в проведении количественного учёта всех деталей процесса. Эта последняя работа в ближайшее время будет мной поручена проф. Я.Б. Зельдовичу ".

    С сообщением о пуске в США первого уранового котла, открывающего перспективы крупномасштабного использования атомной энергии и получения нового делящегося материала с атомным весом 239, пригодного для изготовления атомной бомбы (имелся в виду ядерный реактор Э. Ферми, пущенный 2 декабря 1942 г. в г. Чикаго), И.В. Курчатов был ознакомлен в июле 1943 г. вскоре после получения по каналам разведки этого сообщения.

    Он дал чрезвычайно высокую оценку факту пуска в США первого в мире ядерного реактора. В своём отзыве на указанный материал разведки он писал: "Рассмотренный материал содержит исключительной важности сообщение о пуске в Америке первого уран-графитового котла - сообщение о событии, которое нельзя оценить иначе, как крупнейшее явление в мировой науке и технике "

    Отметим, что в уже упоминавшемся докладе английского "Комитета MAUD", который поступил в СССР по каналам разведки в 1941 г. и с которым в конце 1942 г. был ознакомлен И.В. Курчатов, говорилось о том, что элемент с массой 239 весьма вероятно будет иметь делительные свойства, подобные свойствам урана-235, и может быть использован как взрывчатое вещество в атомной бомбе(см. ).

  •  


    Читайте:



    Сочинение My working day на английском с переводом

    Сочинение My working day на английском с переводом

    «Распорядок дня на английском языке» – одна из самых востребованных тем. Пожалуй, одна из первых, изучаемых в школе и повторяемых в ВУЗе. Будни или...

    Star wars: история далекой-далекой галактики - легенды и сказания

    Star wars: история далекой-далекой галактики - легенды и сказания

    Кратко о статье: Расширенная вселенная давно развивается независимо от своих непосредственных создателей. Дабы не путаться в хронологии событий,...

    ю Высшие и центральные государственные учреждения

    ю Высшие и центральные государственные учреждения

    В эпоху Петра I в России продолжились и усилились серьезные изменения в политической, экономической и культурной жизни России, начавшиеся еще в...

    Духовно-рыцарские ордена – кратко

    Духовно-рыцарские ордена – кратко

    Орден госпитальеров — самый знаменитый и прославленный из духовно-рыцарских орденов. Полное его наименование — Суверенный Военный Орден...

    feed-image RSS