Главная - Радуга Михаил
Группы нитрификаторов. Выявление нитрифицирующих бактерий на плотных средах Несколько ключевых моментов по аммиаку

Еще в 1870 г. Шлезинг и Мюнц (Schloesing, Miintz) доказали, что нитрификация имеет биологическую природу. Для этого они добавляли к сточным водам хлороформ. В результате окисление аммиака прекращалось. Однако специфические микроорганизмы, вызывающие этот процесс, были выделены лишь Виноградским. Им же было показано, что хемоавтотрофные нитрификаторы могут быть подразделены на бактерий, осуществляющих первую фазу этого процесса, а именно окисление аммония до азотистой кислоты (NH4+->N02-), и бактерий второй фазы нитрификации, переводящих азотистую кислоту в азотную (N02-->-N03-). И те и другие микроорганизмы являются грамотрицательными. Их относят к семейству Nitrobacteriaceae.


Смотреть значение Нитрифицирующие Бактерии в других словарях

Бактерии Мн. — 1. Одноклеточные микроорганизмы.
Толковый словарь Ефремовой

Бактерии — [тэ́], -ий; мн. (ед. бакте́рия, -и; ж.). [от греч. baktērion - палочка]. Одноклеточные микроорганизмы. Почвенные б. Гнилостные б. Болезнетворные б.
◁ Бактериа́льный, -ая, -ое. Б-ая........
Толковый словарь Кузнецова

Бактерии — группа одноклеточных микроскоп, организмов. Вместе с сине-зелеными водорослями Б. представляют царство и надцарство прокариотов (см.), к-рое состоит из типов (отделов)........
Словарь микробиологии

Бактерии "лягушачьей Икры" — бактерии «лягушачьей икры»
см. слизь. бактерии маслянокислые – бактерии, возбудители маслянокислого брожения. Сахаролитические клостридии, анаэробные спорообразующие........
Словарь микробиологии

Бактерии "стебельковые" — бактерии «стебельковые»
бактерии, образующие выросты (стебельки), за счет которых они прикрепляются к субстрату. Водные формы. Примером служат представители рода Caulobacter.
Словарь микробиологии

Бактерии Водородные — большая группа бактерий, получающих энергию для роста путем аэробного окисления Н2 и осуществляющих ассимиляцию СО2 (хемосинтез). В то же время многие Б. в. хорошо растут........
Словарь микробиологии

Бактерии Газообразующие — бактерии, способные при росте на специальных субстратах образовывать газы–Н2,СО2 и др. Обычно это свойство используется как диагностический признак.
Словарь микробиологии

Бактерии Гноеродные — стафилококки, стрептококки и др. возбудители местного гнойного воспаления или общей инфекции организма животных и человека (сепсис).
Словарь микробиологии

Бактерии Денитрифицирующие — бактерии, способные осуществлять денитрификацию.
Словарь микробиологии

Бактерии Зелёные — фототрофные бактерии, культуры которых обычно имеют соответствующую окраску. Представлены двумя семействами. Семейство Chlorobiaceae – одноклеточные бактерии в виде палочек,........
Словарь микробиологии

Бактерии Кишечной Группы — бактерии сем. Enterobacte–riaceae, включающего ряд родов (Escherichia, Klebsiella, Enterobacter, Salmonella, Shigella и др.) – типичных обитателей кишечника животных и человека. При значительном разнообразии........
Словарь микробиологии

Бактерии Клубеньковые — бактерии родов Rhizobium, Bradyrhizobium, Azorhizobium, Sinorhizobium, азотфиксирующие симбиотические бактерии, образующие клубеньки на корнях бобовых растений – симбионтов. Внутри клубеньков........
Словарь микробиологии

Бактерии Кристаллоформные — спорообразующие бактерии Bacillus thuringiensis, вызывающие болезни у насекомых. Содержат в клетке крупные кристаллы эндотоксина, за что и получили свое название. Впервые были........
Словарь микробиологии

Бактерии Лизогенные — бактерии, содержащие фаг в состоянии профага и способные продуцировать зрелые фаговые частицы после индукции этого процесса антибиотиками, температурой, УФ и радиацией. См. также лизогения.
Словарь микробиологии

Бактерии Мезофильные — бактерии, для которых температурный оптимум для роста лежит в пределах 2°– 42 °C; большинство – почвенные и водные организмы.
Словарь микробиологии

Бактерии Метанокисляющие — бактерии, использующие метан как источник энергии и углерода. Грамотрицательные, подвижные и неподвижные, сферической, палочковидной или вибриоидной формы. Имеют развитую........
Словарь микробиологии

Бактерии Молочнокислые — бактерии родов Lactobacillus, Streptococcus и др., при сбраживании углеводов образуют молочную кислоту. Факультативные анаэробы, грамположительные палочки и кокки, спор не образуют.........
Словарь микробиологии

Бактерии Нитчатые — бактерии, растущие в виде длинных нитей, состоящих из цепочек клеток. Нередко имеют общую слизистую капсулу. Типичный представитель – железобактерии Leptothrix. См. также трихомные бактерии.
Словарь микробиологии

Бактерии Патогенные — бактерии, вызывающие болезни человека, животных и растений.
Словарь микробиологии

Бактерии Пропионовокислые — бактерии рода Propioni–bacterium и др., сбраживающие углеводы с образованием пропионовой, уксусной кислот. Обитатели рубца и кишечника жвачных. Используются в производстве........
Словарь микробиологии

Бактерии Простековые — бактерии простекообразующие, бактерии простекатные – см. простекобактерии.
Словарь микробиологии

Бактерии Психрофильные — БАКТЕРИИ КРИОФИЛЬНЫЕ – бактерии, растущие с максимальной скоростью при температурах ниже 2° °С. Напр., некоторые морские светящиеся бактерии, железобактерии (Gallionella).
Словарь микробиологии

Бактерии Пурпурные — группа фототрофных бактерий. По морфологии – кокки, палочки и извитые формы, неподвижные и подвижные за счет жгутиков, грамотрицательные. Размножаются делением и почкованием.........
Словарь микробиологии

Бактерии Сапротрофные — (уст. сапрофитные) – бактерии, превращающие органические вещества отмерших организмов в неорганические, обеспечивая круговорот веществ в природе. Термин используется........
Словарь микробиологии

Бактерии Светящиеся — хемоорганотрофные бактерии, способные к биолюминесценции (роды Photobacterium, Beneckea) в присутствии кислорода. Обычно морские формы.
Словарь микробиологии

Бактерии Спорообразующие — бактерии, обладающие способностью образовывать термоустойчивые споры при наступлении неблагоприятных для роста условий. Аэробные и факультативно аэробные Б. с. относят........
Словарь микробиологии

Бактерии Сульфатредуцирующие — бактерии сульфат–восстанавливающие, сульфатредукторы – физиологическая группа бактерий, восстанавливающих сульфат до сероводорода в анаэробных условиях (см. анаэробное........
Словарь микробиологии

Бактерии Термофильные — бактерии, хорошо растущие при температурах выше 40 °С; для большинства из них верхний предел температуры – 70 °С. В отличие от Б.т. термотолерантные бактерии растут до........
Словарь микробиологии

Бактерии Тионовые — серобактерии, получающие энергию за счет окисления серы и ее восстановленных неорганических соединений преимущественно до сульфатов. Обычно название Б. т. применяется........
Словарь микробиологии

Бактерии Уксуснокислые — группа бактерий, способных образовывать органические кислоты путем неполного окисления сахаров или спиртов. В качестве конечного продукта образуют уксусную, гликолевую,........
Словарь микробиологии

В пресноводном и морском аквариумах присутствуют бактерии, окисляющие и аммиак (АОБ), и нитриты (НОБ):

* Относящиеся к Нитрозомонас, среди которых N.Europea является самой распространенной (морс.вода),

* Nitrosococcus (морск.вода),

* Относящиеся к Нитроспира, среди которых N.Marina и N.Moscoviensis являются самыми распространенными АОБ и НОБ (пресн.вода),

* Nitrosococcus Mobilis (морск.вода, НОБ),

* Нитроспина (морск.вода, НОБ)

Морские нитрифицирующие бактерии отличаются от живущих в пресной воде, но при этом они имеют родство.

Гетеротрофные бактерии

Гетеротрофным бактериям необходима органическая подложка для извлечения из нее углерода и дальнейшего роста. Некоторые из этих бактерий строго аэробны, но многие и факультативно-анаэробны (могут выживать как в присутствии, так и отсутствии кислорода).

Гетеротрофные бактерии также присутствуют во многих товарах аквариумной или прудовой химии. Эти бактерии могут быть как грампозитивными (например Bacillus), так и грамотрицательными (например Псевдомонас).

Как следствие, если взять в качестве примера Псевдомонас, применение в аквариуме таких грамотрицательных средств, как Канамицин, окажет сильное негативное воздействие на Псевдомонас, но при этом не затронет аутотрофных нитрифицирующих бактерий.

Еще один фактор, заслуживающий внимания – темп роста колоний бактерий. Именно по этой причине производители так любят использовать гетеротрофные бактерии в качестве основной составляющей их товаров для быстрого запуска аквариума.

Ааутотрофные нитрифицирующие бактерии удваивают свою популяцию каждые 15-24 часа при благоприятных условиях. В свою очередь, гетеротрофные бактерии способны воспроизводиться каждые 15-60 минут.

Однако исследования выявили, что для переработки одного и того же количества аммиака потребуется в миллион раз больше гетеротрофных бактерий, чем аутотрофных нитрифицирующих. Частично это связано с тем, что гетеротрофные бактерии способны извлекать себе питание также и из других органических соединений.

Использование только гетеротрофных бактерий при запуске азотного цикла в аквариуме или пруде приведет к созданию среды, не содержащей должного количества аутотрофных нитрифицирующих бактерий и неспособной быстро адаптироваться к резко возросшей бионагрузке, будь то новая рыба или другие загрязнения, что приведет к резким скачкам содержания аммиака или нитритов.

Справиться с этим можно, лишь постоянно добавляя в воду средства для запуска с гетеротрофными бактериями, став их заложником. Еще одним недостатком такой среды является постоянное помутнение воды.

По этой причине мы считаем, что использование средств, содержащих только гетеротрофные бактерии, таких как «Hagen Cycle» или популярный грунт «Eco-complete», нежелательно в некоторых аквариумах.

При этом стоит отметить, что добавление в здоровый аквариум грунта «Eco-complete» наверняка не окажет влияния на биофильтр, но если вдруг после добавления такого грунта в аквариуме также была увеличена и бионагрузка, то это наверняка вызовет помутнение воды и скачок содержания аммиака.

Низкий рН и нитрификация (Важно!)

Также следует отметить, что рН влияет на бактерии, задействованные в процессе нитрификации. Нитрификация, протекающая с участием АОБ и НОБ, имеет различные темпы при уровнях рН ниже 6.0 и выше 7.0.

Токсичный аммиак (NH3) сам превращается в аммоний (нетоксичный NH4) при рН ниже 6.0 и также аммоний сам переходит обратно в токсичный NH3 при рН выше 7.0.

Важно: темп нитрификации быстро снижается с повышением рН от уровней ниже 6.0 до 7.0 и более, до определенного момента, после которого происходит как бы перезапуск/самовосстановление темпов нитрификации, но уже при повышенном значении рН. Механизмы взаимосвязи темпов нитрификации от рН еще до конца не изучены.

Привожу краткую цитату из статьи «Высокие темпы нитрификации при низком рН в биомасс-реакторах разного типа» (http://www.ncbi.nlm.nih.gov/pmc/articles/PMC525248/): «кормовая добавка содержала только неорганические соли без какого-либо непосредственного органического субстрата для поддержания существенного гетеротрофного роста».

Я использовал эту статью и цитату для того, чтобы подчеркнуть, что изменение состояния гетеротрофных бактерий вместе с ответным изменением редокса, либо отсутствием такового (при рН ниже 6.0 среда считается очень окисляющей, в которой практически не протекают процессы восстановления) должно означать, что среда в водоеме является неблагоприятной. И также, адаптация у аутотрофных бактерий может проходить аналогичным образом, и это объясняет прерывание нитрификации при изменении рН и при превращениях NH3 и NH4.

Так как типичная аквариумная среда всегда содержит гетеротрофные бактерии, а в наших исследованиях мы блокировали их с помощью хлорида аммония (нашатырь), то можно заключить, что гетеротрофные бактерии отчасти являются причиной взаимосвязи между темпами нитрификации и изменением рН.

В процессе нитрификации карбонаты в аквариуме или пруде противодействуют кислотам, которые образуются во время нитрификации или прочего разложения органики. Поэтому без учитывающего это обстоятельство уровня КН, даже если вы содержите таких обитателей из бассейна Амазонки, как дискусы или микрогеофагусы Рамирези, могут произойти незначительные изменения рН, которые при этом, однако, повлияют на азотный цикл.

По этой причине весьма рискованно поддерживать пониженные уровни рН/КН, так как простая подмена воды с незначительно повышенным рН может привести к моментальному переходу аммония (NH4) в смертельный аммиак (NH3) с катастрофическими последствиями.

Пониженный рН и слабая нитрифицирующая среда способствуют развитию патогенных грибов/сапролегнии и подавленному редокс-балансу.

Еще одно наблюдение: в успешно запущенных аквариумах с различными типами фильтрации (а именно с донным фильтром, канистровым внешним, подвесным, просто губковым, песочным) или с их комбинацией добавление эритромицина привело к полной остановке нитрификации в фильтрах на целую неделю.

Стоит отметить, что дольше всего лекарству «сопротивлялись» песочный, канистровый и просто губковый фильтры, и они же быстрее остальных восстановили свою работу (под губковым, или sponge filter, возможно, имеется в виду эрлифтный фильтр).

Несколько ключевых моментов по аммиаку

* Аммиак в форме токсичного NH3 присутствует в аквариумах благодаря загрязнениям (животного или растительного происхождения) и сам же превращается в менее токсичный NH4 при рН около 6.4 или ниже.

* Симптомы отравления аммиаком часто проявляются в виде болезней, так как позволяют бактериям возбудителям, таким как аэромонас, захватить организм на фоне сниженного иммунитета из-за стресса, вызванного отравлением аммиаком.

Также острым симптомом такого отравления является учащенное дыхание (часто ближе к поверхности воды), выступающие и неестественно покрасневшие жабры.

Длительное нахождение в среде даже с низким уровнем аммиака или нитритов может привести к разрушению плавников и потере цвета.

Аквариумисты, лечащие гниение плавников и другие болезни, должны в первую очередь обратить внимание на то, что причиной проблемы может быть как непосредственное отравление аммиаком, так и последствием такого отравления в прошлом.

Лечение, как и добавление лекарств, не учитывающее этого, может не принести результата или даже усугубить положение дел (применение средств, снижающих уровень аммиака оправдано как временная и срочная мера).

* Перемешивание воды может способствовать испарению ионов аммиака, но не настолько быстро, чтобы на него стоило обратить внимание для поддержания здоровой среды в аквариуме.

Аммиак, о котором мы ведем здесь речь, не должен быть перепутан с карбонатом аммония, используемым в быту, и который достаточно быстро испаряется.

Также не следует проводить аналогии с системами охлаждения, в которых безводный аммиак нагревается для испарения и конденсируется для охлаждения.

* Токсичный аммиак NH3 может быть удален из аквариума или переведен в нетоксичную форму с помощью таких средств, как Prime, Ammo lock, Amquel, но только как срочное и временное средство.

* Уровень аммиака 0.25 ррм и до 0.05 ррм НОРМАЛЕН для здорового аквариума с запущенным азотным циклом в связи с естественными колебаниями бионагрузки аквариума. Это связано с тем, что аутотрофные бактерии не мгновенно реагируют на изменения в содержании загрязнений в столбе воды.

  • Автофото трофы - энергию для синтеза органических веществ получают из света (фотосинтез). К фототрофам относятся растения и фотосинтезирующие бактерии.
  • Автохемо трофы - энергию для синтеза органических веществ получают при окислении неорганических веществ (хемосинтез). Например,
    • серобактерии окисляют сероводород до серы,
    • железобактерии окисляют двухвалентное железо до трехвалентного,
    • нитрифицирующие бактерии окисляют аммиак до азотной кислоты.

Сходство и различие фотосинтеза и хемосинтеза

  • Сходства: все это пластический обмен, из неорганических веществ делаются органические (из углекислого газа и воды - глюкоза).
  • Различие: энергия для синтеза при фотосинтезе берется из света, а при хемосинтезе - из окислительно-восстановительных реакций.


ВНИМАНИЕ! Разница между авто- и гетеротрофами состоит в способе получения органических веществ («получают готовые» или «делают сами»). Энергию для жизнедеятельности и авто-, и гетеротрофы получают путем дыхания.

Сравнение дыхания и фотосинтеза

Тесты и задания

АВТОТРОФЫ
Выберите три варианта. К автотрофам относят

1) споровые растения
2) плесневые грибы
3) одноклеточные водоросли
4) хемотрофные бактерии
5) вирусы
6) большинство простейших

Ответ


1. Определите два организма, «выпадающих» из списка автотрофных организмов, и запишите цифры, под которыми они указаны.
1) Амеба обыкновенная
2) Венерина мухоловка
3) Пинуллярия зеленая
4) Инфузория туфелька
5) Спирогира

Ответ


2. Все приведённые ниже организмы, кроме двух, по типу питания относят к автотрофам. Определите два организма, «выпадающих» из общего списка, и запишите цифры, под которыми они указаны.
1) хламидомонада
2) хвощ полевой
3) подосиновик
4) кукушкин лён
5) дрожжи

Ответ


3. Все приведённые ниже организмы, кроме двух, по типу питания относят к автотрофам. Определите два организма, «выпадающих» из общего списка, и запишите цифры, под которыми они указаны.
1) серобактерия
2) спирогира
3) мухомор
4) сфагнум
5) бактериофаг

Ответ


4. Все приведённые ниже организмы, кроме двух, по типу питания относят к автотрофам. Определите два организма, «выпадающих» из общего списка, и запишите цифры, под которыми они указаны.
1) цианобактерия
2) амёба
3) ламинария
4) сфагнум
5) пеницилл

Ответ


Ответ


Выберите один, наиболее правильный вариант. По способу питания подавляющее большинство бактерий
1) автотрофы
2) сапротрофы
3) хемотрофы
4) симбионты

Ответ


Выберите один, наиболее правильный вариант. Какой организм по способу питания относят к гетеротрофам?
1) хламидомонаду
2) ламинарию
3) пеницилл
4) хлореллу

Ответ


Выберите один, наиболее правильный вариант. Бактерии гниения являются по способу питания организмами
1) хемотрофными
2) автотрофными
3) гетеротрофными
4) симбиотическими

Ответ


АВТОТРОФЫ - ГЕТЕРОТРОФЫ
1. Установите соответствие между особенностью обмена веществ и группой организмов, для которых она характерна: 1) автотрофы, 2) гетеротрофы

А) выделение кислорода в атмосферу
Б) использование энергии, заключенной в пище, для синтеза АТФ
В) использование готовых органических веществ
Г) синтез органических веществ из неорганических
Д) использование углекислого газа для питания

Ответ


2. Установите соответствие между характеристикой и способом питании организмов: 1) автотрофный, 2) гетеротрофный. Запишите цифры 1 и 2 в правильном порядке.
А) источником углерода служит углекислый газ
Б) сопровождается фотолизом воды
В) используется энергия окисления органических веществ
Г) используется энергия окисления неорганических веществ
Д) поступление пищи путем фагоцитоза

Ответ


3. Установите соответствие между особенностью питания организма и группой организмов: 1) автотрофы, 2) гетеротрофы. Запишите цифры 1 и 2 в порядке, соответствующем буквам.
А) захватывают пищу путём фагоцитоза
Б) используют энергию, освобождающуюся при окислении неорганических веществ
В) получают пищу путём фильтрации воды
Г) синтезируют органические вещества из неорганических
Д) используют энергию солнечного света
Е) используют энергию, заключённую в пище

Ответ


АВТОТРОФЫ - ГЕТЕРОТРОФЫ ПРИМЕРЫ
1. Установите соответствие между примером и способом питания: 1) автотрофный, 2) гетеротрофный. Запишите цифры 1 и 2 в правильном порядке.

А) цианобактерии
Б) ламинария
В) бычий цепень
Г) одуванчик
Д) лисица

Ответ


2. Установите соответствие между организмом и типом питания: 1) автотрофное, 2) гетеротрофное. Запишите цифры 1 и 2 в порядке, соответствующем буквам.
А) сосна сибирская
Б) кишечная палочка
В) амебa человеческая
Г) пеницилл
Д) хвощ полевой
Е) хлорелла

Ответ


3. Установите соответствие между одноклеточным организмов и типом питания, который для него характерен: 1) автотрофный, 2) гетеротрофный. Запишите цифры 1 и 2 в порядке, соответствующем буквам.
А) холерный вибрион
Б) железобактерия
В) малярийный плазмодий
Г) хламидомонада
Д) цианобактерия
Е) дизентерийная амёба

Ответ


4. Установите соответствие между примерами и способами питания: 1) автотрофный, 2) гетеротрофный. Запишите цифры 1 и 2 в порядке, соответствующем буквам.
А) спирогира
Б) бычий цепень
В) хвощ полевой
Г) серобактерия
Д) зеленый кузнечик

Ответ


5. Установите соответствие между примерами и способами питания: 1) автотрофный, 2) гетеротрофный. Запишите цифры 1 и 2 в порядке, соответствующем буквам.
А) хлорелла
Б) лягушка
В) шампиньон
Г) папоротник
Д) ламинария

Ответ


СОБИРАЕМ 6:
А) мукор
Б) нитрифицирующие бактерии
В) трутовик

ХЕМОТРОФЫ
Выберите один, наиболее правильный вариант. Какие организмы преобразуют энергию окисления неорганических веществ в макроэргические связи АТФ?

1) фототрофы
2) хемотрофы
3) гетеротрофы
4) сапротрофы

Ответ


Хемосинтезирующие бактерии способны получать энергию из соединений всех элементов, кроме двух. Определите два элемента, «выпадающих» из общего списка, и запишите цифры, под которыми они указаны.
1) Азот
2) Хлор
3) Железо
4) Магний
5) Сера

Ответ


ФОТОТРОФЫ - ХЕМОТРОФЫ
Установите соответствие между характеристикой организмов и способом их питания: 1) фототрофный, 2) хемотрофный. Запишите цифры 1 и 2 в правильном порядке.

А) используется энергия света
Б) происходит окисление неорганических веществ
В) реакции протекают в тилакоидах
Г) сопровождается выделением кислорода
Д) присущ водородным и нитрифицирующим бактериям
Е) требует наличия хлорофилла

Ответ


Выберите один, наиболее правильный вариант. Сходство хемосинтеза и фотосинтеза состоит в том, что в обоих процессах
1) на образование органических веществ используется солнечная энергия
2) на образование органических веществ используется энергия, освобождаемая при окислении неорганических веществ
3) в качестве источника углерода используется углекислый газ
4) в атмосферу выделяется конечный продукт - кислород

Ответ


ФОТОТРОФЫ - ХЕМОТРОФЫ ПРИМЕРЫ
1. Установите соответствие между группой организмов и процессом превращения веществ, который для нее характерен: 1) фотосинтез, 2) хемосинтез

А) папоротникообразные
Б) железобактерии
В) бурые водоросли
Г) цианобактерии
Д) зеленые водоросли
Е) нитрифицирующие бактерии

Ответ


2. Установите соответствие между примерами и способами питания живых организмов: 1) фототрофный, 2) хемотрофный. Запишите цифры 1 и 2 в порядке, соответствующем буквам.
А) спирогира
Б) нитрифицирующая бактерия
В) хлорелла
Г) серобактерии
Д) железобактерии
Е) хлорококк

Ответ


ФОТОТРОФЫ - ХЕМОТРОФЫ - ГЕТЕРОТРОФЫ
1. Установите соответствие между организмом и способом его питания: 1) фототрофный, 2) гетеротрофный, 3) хемотрофный. Запишите цифры 1, 2 и 3 в правильном порядке.

А) спирогира
Б) пеницилл
В) серобактерия
Г) цианобактерия
Д) дождевой червь

Ответ


2. Установите соответствие между организмами и типами их питания: 1) фототрофный, 2) гетеротрофный. Запишите цифры 1 и 2 в порядке, соответствующем буквам.
А) лямблия
Б) гриб спорынья
В) хламидомонада
Г) цианобактерия
Д) сфагнум

Ответ


ФОТОСИНТЕЗ - ДЫХАНИЕ
1. Установите соответствие между характеристикой и процессом: 1) фотосинтез, 2) гликолиз. Запишите цифры 1 и 2 в правильном порядке.

А) происходит в хлоропластах
Б) синтезируется глюкоза
В) является этапом энергетического обмена
Г) происходит в цитоплазме
Д) происходит фотолиз воды

Ответ


2. Установите соответствие между характеристикой и процессом жизнедеятельности растения, к которому её относят: 1-фотосинтез, 2-дыхание
1) синтезируется глюкоза
2) окисляются органические вещества
3) выделяется кислород
4) образуется углекислый газ
5) происходит в митохондриях
6) сопровождается поглощением энергии

Ответ


3. Установите соответствие между процессом и видом обмена веществ в клетке: 1) фотосинтез, 2) энергетический обмен
А) образование пировиноградной кислоты (ПВК)
Б) происходит в митохондриях
В) фотолиз молекул воды
Г) синтез молекул АТФ за счет энергии света
Д) происходит в хлоропластах
Е) синтез 38 молекул АТФ при расщеплении молекулы глюкозы

Ответ


4. Установите соответствие между признаком жизнедеятельности растений и процессом дыхания или фотосинтеза: 1) дыхание, 2) фотосинтез
А) осуществляется в клетках с хлоропластами
Б) происходит во всех клетках
В) поглощается кислород
Г) усваивается углекислый газ
Д) образуются органические вещества из неорганических на свету
Е) окисляются органические вещества

Ответ


5. Установите соответствие особенностями и между процессами: 1) фотосинтез, 2) дыхание. Запишите цифры 1 и 2 в правильном порядке.
А) АТФ образуется в хлоропластах
Б) происходит во всех живых клетках
В) АТФ образуется в митохондриях
Г) конечные продукты – органические вещества и кислород
Д) исходные вещества – углекислый газ и вода
Е) энергия высвобождается

Ответ


6. Установите соответствие между процессами и их особенностями: 1) дыхание, 2) фотосинтез. Запишите цифры 1 и 2 в порядке, соответствующем буквам.
А) кислород поглощается, а углекислый газ и вода выделяются
Б) органические вещества образуются
В) происходит в хлоропластах на свету
Г) углекислый газ и вода поглощаются, а кислород выделяется
Д) происходит в митохондриях на свету и в темноте
Е) органические вещества расщепляются

Ответ


Установите соответствие между процессом, протекающим в клетке, и органоидом, в котором он происходит: 1) митохондрия, 2) хлоропласт. Запишите цифры 1 и 2 в правильной последовательности.
А) восстановление углекислого газа до глюкозы
Б) синтез АТФ в процессе дыхания
В) первичный синтез органических веществ
Г) превращение световой энергии в химическую
Д) расщепление органических веществ до углекислого газа и воды

Ответ


Установите соответствие между признаками органоида и органоидом, для которого эти признаки характерны: 1) Хлоропласт, 2) Митохондрия. Запишите цифры 1 и 2 в правильном порядке.
А) Содержит зелёный пигмент
Б) Состоит из двойной мембраны, тилакоидов и гран
В) Преобразует энергию света в химическую энергию
Г) Состоит из двойной мембраны и крист
Д) Обеспечивает окончательное окисление питательных веществ
Е) Запасает энергию в виде 38 моль АТФ при расщеплении 1 моль глюкозы

Ответ


ДЫХАНИЕ РАСТЕНИЙ
Выберите один, наиболее правильный вариант. В процессе дыхания растения обеспечиваются

1) энергией
2) водой
3) органическими веществами
4) минеральными веществами

Ответ


Выберите один, наиболее правильный вариант. Культурные растения плохо растут на заболоченной почве, так как в ней
1) недостаточное содержание кислорода
2) происходит образование метана
3) избыточное содержание органических веществ
4) содержится много торфа

Ответ


Выберите один, наиболее правильный вариант. Растения в процессе дыхания используют кислород, который поступает в клетки и обеспечивает
1) окисление неорганических веществ до углекислого газа и воды
2) окисление органических веществ с освобождением энергии
3) синтез органических веществ из неорганических
4) синтез белка из аминокислот

Ответ


Выберите один, наиболее правильный вариант. Растения в процессе дыхания
1) выделяют кислород и поглощают углекислый газ
2) поглощают кислород и выделяют углекислый газ
3) накапливают энергию в образующихся органических веществах
4) синтезируют органические вещества из неорганических

Ответ


Выберите один, наиболее правильный вариант. Чтобы обеспечить доступ кислорода воздуха к корням растений, почву надо
1) удобрять солями калия
2) рыхлить до полива и во время полива
3) удобрять азотными солями
4) рыхлить после полива

Ответ


Проанализируйте текст «Дыхание растений». Для каждой ячейки, обозначенной буквой, выберите соответствующий термин из предложенного списка. Процесс дыхания растений протекает постоянно. В ходе этого процесса организм растения потребляет ________ (А), а выделяет ________ (Б). Ненужные газообразные вещества удаляются из растения путём диффузии. В листе они удаляются через особые образования - ________ (В), расположенные в кожице. При дыхании освобождается энергия органических веществ, запасённая в ходе ________ (Г), происходящего в зелёных частях растения на свету.
1) вода
2) испарение
3) кислород
4) транспирация
5) углекислый газ
6) устьица
7) фотосинтез
8) чечевичка

Ответ


© Д.В.Поздняков, 2009-2019

Еще в 1870 г. Шлезинг и Мюнц (Schloesing, Muntz) доказали, что нитрификация имеет биологическую природу. Для этого они добавляли к сточным водам хлороформ. В результате окисление аммиака прекращалось. Однако специфические микроорганизмы, вызывающие этот процесс, были выделены лишь Виноградским. Им же было показано, что хемо-автотрофные нитрификаторы могут быть подразделены на бактерий, осуществляющих первую фазу этого процесса, а именно окисление аммония до азотистой кислоты (NH4 + ->NO2 -), и бактерий второй фазы нитрификации," переводящих азотистую кислоту в азотную (N02 - ->NO3 -). И те и другие микроорганизмы являются грамотрицательными. Их относят к семейству Nitrobacteriaceae.

Бактерии первой фазы нитрификации представлены четырьмя родами: Nitrosomonas, Nitrosocystis, Nitrosolobus и Nitrosospira. Из них наиболее изучен вид Nitrosomonas euro-раеа, хотя получение чистых культур этих микроорганизмов, как и других нитрифицирующих хемоавтотрофов, до сих пор остается достаточно сложным. Клетки N. еurораеа обычно овальные (0,6-1,0)< 0,9-2,0 мкм), размножаются бинарным делением. В процессе развития культур в жидкой среде наблюдаются подвижные формы, имеющие один или несколько жгутиков, и неподвижные зооглеи.

У Nitrosocystis oceanus клетки округлые, диаметром 1,8-2,2 мкм, но бывают и крупнее (до 10 мкм). Способны к движению благодаря наличию одного жгутика или пучка жгутиков. Образуют зооглеи и цисты.

Размеры Nitrosolobus multiformis составляют 1,0-1,5 X 1,0-2,5 мкм. Форма этих бактерий не совсем правильная, так как клетки разделены на отсеки, дольки (-lobus, отсюда и название Nitrosolobus), которые образуются в результате разрастания внутрь цитоплазматической мембраны.

У Nitrosospira briensis клетки палочковидные и извитые (0,8 -1,0 X 1,5-2,5 мкм), имеют от одного до шести жгутиков.

Среди бактерий второй фазы нитрификации различают три рода: Nitrobacter, Nitrospina и Nitrococcus.

Большая часть исследований проведена с разными штаммами Nitrobacter, многие из которых могут быть отнесены к Nitrobacter wino-gradskyi, хотя описаны и другие виды. Бактерии имеют преимущественно грушевидную форму клеток. Как показано Г. А. Заварзиным, размножение Nitrobacter происходит путем почкования, причем дочерняя клетка бывает обычно подвижна, так как снабжена одним латерально расположенным жгутиком. Отмечают также сходство Nitrobacter с почкующимися бактериями рода Hyphomicrobium по составу жирных кислот, входящих в липиды.

Данные относительно таких нитрифицирующих бактерий, как Nitrospina gracilis и Nitrococcus mobilis, пока весьма ограниченны. По имеющимся описаниям, клетки N. gracilis палочковидные (0,3-0,4 X 2,7-6,5 мкм), но обнаружены и сферические формы. Бактеррга неподвижны. Напротив, N. mobilis обладает подвижностью. Клетки его округлые, диаметром около 1,5 мкм, с одним-двумя жгутиками.


По строению клеток исследованные нитрифицирующие бактерии похожи на другие грамотрицательные микроорганизмы. У некоторых видов обнаружены развитые системы внутренних мембран, которые образуют стопку в центре клетки (Nitrosocystis oceanus), или располагаются по периферии параллельно цитоплазматической мембране (Nitrosomonas еигораеа), или образуют чашеподобную структуру из нескольких слоев (Nitrobacter winogradskyi). Видимо, с этими образованиями связаны ферменты, участвующие в окислении нитрификаторами специфических субстратов.

Нитрифицирующие бактерии растут на простых минеральных средах, содержащих окисляемый субстрат в виде аммония или нитритов и углекислоту. Источником азота в конструктивных процессах могут быть, кроме аммония, гидроксиламин и нитриты.

Показано также, что Nitrobacter и Nitrosomonas еигораеа восстанавливают нитриты с образованием аммония.

Такой микроорганизм, как Nitrosocystis oceanus, выделенный из Атлантического океана, относится к облигатным галофилам и растет на среде, содержащей морскую воду. Область значений рН, при которой наблюдается рост разных видов и штаммов нитрифицирующих бактерий, приходится на 6,0-8,6, а оптимальное значение рН чаще всего 7,0-7,5. Среди Nitrosomonas еигораеа известны штаммы, имеющие температурный оптимум при 26 или около 40 °С, и штаммы, довольно быстро растущие при 4°С.

Все известные нитрифицирующие бактерии являются облигатными аэробами. Кислород необходим им как для окисления аммония в азотистую кислоту:

NH4 + +3/2O2 ->N02 - + H20+2H + , дельта F = - 27,6.104d;w:,

так и для окисления азотистой кислоты в азотную:

NO2 - +1/2О2 - NO3 - , дельта F = -7,6*104дж.

Но весь процесс превращения аммония в нитраты происходит в несколько этапов с образованием соединений, где азот имеет разную степень окисленности.

Первым продуктом окисления аммония является гидроксиламин, который, возможно, образуется в результате непосредственного включения в NH4 + молекулярного кислорода:

NH4 + +1/2 O2 -> NH2OH+H + , дельта F = + 15,9*103дж.

Однако окончательно механизм окисления аммония до гидроксиламина не выяснен. Превращение гидроксиламина в нитрит:

NH2OH+O2 -> N02 - + H20+H + , дельта F = - 28,9 104 Дж

как предполагают, идет через образование гипонитрита NOH, а также окись азота (N0). Что касается закиси азота (N20), обнаруживаемой при окислении Nitrosomonas europaea аммония и гидроксиламина, то большинство исследователей считает ее побочным продуктом, образующимся в основном в результате восстановления нитрита.

Исследование окисления Nitrobacter нитрита с использованием в опытах тяжелого изотопа кислорода (18 0) показало, что образующиеся нитраты содержат значительно больше 18 0, когда меченой является вода, а не молекулярный кислород. Поэтому предполагают, что сначала происходит образование комплекса N02~H2O, который далее окисляется до N0s~. При этом происходит передача электронов через промежуточные акцепторы на кислород. Весь процесс нитрификации можно представить в виде следующей схемы (рис. 137), отдельные этапы которой требуют, однако, уточнения.

Рис. 131. Структурные формулы некоторых каротиноидов фототрофных бактерий.

Кроме первой реакции, а именно образования из аммония гидроксиламина, последующие стадии обеспечивают организмы энергией в виде аденозинтрифосфата (АТФ). Синтез АТФ сопряжен с функционированием окислительно-восстановительных систем, передающих электроны на кислород, подобно тому как это имеет место у гетеротрофных аэробных организмов. Но поскольку окисляемые нитрификаторами субстраты имеют высокие окислительно-восстановительные потенциалы, они не могут взаимодействовать с никотинамидадениндинуклеотида-ми (НАД или НАДФ, E = -0,320 В), как это бывает при окислении большинства органических соединений. Так, передача электронов в дыхательную цепь от гидроксиламина, видимо, происходит на уровне флавина:

NH2OH -> флавопротеид -> цит. b (убихинон?) ->-> цит. с -> цит. а -> - 02

Когда окисляется нитрит, то включение его электронов в цепь, вероятно, идет на уровне либо цитохрома типа с, либо цитохрома типа а. В связи с этой особенностью большое значение у нитрифицирующих бактерий имеет так называемый обратный, или обращенный, транспорт электронов, идущий с затратой энергии части АТФ или трансмембранного потенциала, образуемых при передаче электронов на кислород (рис. 138).

Рис. 132. Схема переноса электронов при фотосинтезе у растений: П, и П2 - пигменты фотоактивных центров; Z, и Z2 - первичные акцепторы электрона; Фд - ферредоксин; НАДФ - никотинамидадениндинуклеотидфосфат; АТФ - аденозинтрифосфат.

Таким образом происходит обеспечение хемо-автотрофных нитрифицирующих бактерий не только АТФ, но и НАДН, необходимых для усвоения углекислоты и для других конструктивных процессов.

Согласно расчетам эффективность использования свободной энергии Nitrobacter может составлять 6,0-50,0%, a Nitrosomonas - и больше.

Ассимиляция углекислоты происходит в основном в результате функционирования пенто-зофосфатного восстановительного цикла углерода, иначе называемого циклом Кальвина (см. рис. 134). Итог его выражают следующим уравнением:

6С02+18АТФ+12НАДН+12Н + -> -> 6[СН20] + 18АДФ+18Фн+12НАД+6Н20,

где [СН2О] означает образующиеся органические вещества, имеющие уровень восстановлен-ности углеродов. Однако в действительности в результате ассимиляции углекислоты через цикл Кальвина и другие реакции, прежде всего путем карбоксилирования фосфоенолпирувата, образуются не только углеводы, но и все другие компоненты клеток - белки, нуклеиновые кислоты, липиды и т. д. Показано также, что Nitrococcus mobilis и Nitrobacter winogradskyi могут образовывать в качестве запасных продуктов поли-бета-оксибутират и гликогеноподобный полисахарид. Такое же соединение обнаружено в клетках Nitrosolobus multiformis. Кроме углеродсодержащих запасных веществ, нитрифицирующие бактерии способны накапливать полифосфаты, входящие в состав мета-хроматиновых гранул.

Еще в первых работах с нитрификатором Ви-ноградский отметил, что для их роста неблагоприятно присутствие в среде органических веществ, таких, как пептон, глюкоза, мочевина, глицерин и др. Отрицательное действие органических веществ на хемоавтотрофные нитрифицирующие бактерии неоднократно отмечалось и в дальнейшем. Сложилось даже мнение, что эти микроорганизмы вообще не способны использовать экзогенные органические соединения. Поэтому их стали называть «облигатными автотрофами». Однако в последнее время показано, что использовать некоторые органические соединения эти бактерии способны, но возможности их ограничены. Так, отмечено стимулирующее действие на рост Nitro-bacter в присутствии нитрита дрожжевого авто-лизата, пиридоксина, глутамата и серина, если они в низкой концентрации вносятся в среду. Показано также включение в белки и другие компоненты клеток Nitrobacter 14 C из пирувата, альфа-кетоглутарата, глутамата и аспартата. Известно, кроме того, что Nitrobacter медленно, по окисляет формиат. Включение 14 С из ацетата, пирувата, сукцината и некоторых аминокислот, преимущественно в белковую фракцию, обнаружено при добавлении этих субстратов к суспензиям клеток Nitrosomonas europaea. Ограниченная ассимиляция глюкозы, пирувата, глутамата и аланина установлена для Nitrosocystis oceanus. Есть данные об использовании 14 С-ацетата Nitrosolobus multiformis.

Недавно установлено также, что некоторые штаммы Nitrobacter растут на среде с ацетатом и дрожжевым автолизатом не только в присутствии, но и в отсутствие нитрита, хотя и медленно. При наличии нитрита окисление ацетата подавляется, но включение его углерода в разные аминокислоты, белок и другие компоненты клеток увеличивается. Имеются, наконец, данные, что возможен рост Nitrosomonas и Nitrobacter на среде с глюкозой в диализируе-мых условиях, которые обеспечивают удаление продуктов ее метаболизма, оказывающих инги-биторное действие на данные микроорганизмы. На основании этого делается вывод о способности нитрифицирующих бактерий переключаться на гетеротрофный образ жизни. Однако для окончательных выводов необходимо большее число экспериментов. Важно прежде всего выяснить, как долго нитрифицирующие бактерии могут расти в гетеротрофных условиях при отсутствии специфических окисляемых субстратов.

Хемоавтотрофные нитрифицирующие бактерии имеют широкое распространение в природе и встречаются как в почве, так и в разных водоемах. Осуществляемые ими процессы могут происходить весьма в крупных масштабах и имеют существенное значение в круговороте азота в природе. Раньше считали, что деятельность нитрификаторов всегда способствует плодородию почвы, поскольку они переводят аммоний в нитраты, которые легко усваиваются растениями, а также повышают растворимость некоторых минералов. Сейчас, однако, взгляды на значение нитрификации несколько изменились. Во-первых, показано, что растения усваивают аммонийный азот и ионы аммония лучше удерживаются в почве, чем нитраты. Во-вторых, образование нитратов иногда приводит к нежелательному подкислению среды. В-третьих, нитраты могут восстанавливаться в результате денитрификации до N2, что приводит к обеднению почвы азотом.

Следует также отметить, что наряду с нитрифицирующими хемоавтотрофными бактериями известны гетеротрофные микроорганизмы, способные вести близкие процессы. К гетеротрофным нитрификаторам относятся некоторые грибы из рода Fusarmm и бактерии таких родов, как Alcaligenes, Corynebacterium, Achromoba-cter, Pseudomonas, Arthrobacter, Nocardia.

Показано, что Arthrobacter sp. окисляет в присутствии органических субстратов аммоний с образованием гидроксиламина и далее нитритов и нитратов. Кроме того, может образовываться гидроксамовая кислота. У ряда бактерий выявлена способность осуществлять нитрификацию органических азотсодержащих соединений: амидов, аминов, оксимов, гидро-ксаматов, нитросоединений и др. Пути их превращения представляют следующим образом:

Размеры гетеротрофной нитрификации в некоторых случаях бывают довольно большие. Кроме того, при этом образуются некоторые продукты, обладающие токсичным, канцерогенным, мутагенным действием и соединения с хи-миотерапевтическим эффектом. Поэтому исследованию данного процесса и выяснению его значения для гетеротрофных микроорганизмов сейчас уделяют значительное внимание.

По типу питания все известные живые организмы делятся на два больших вида: гетеро- и автотрофы. Отличительной особенностью последних является их способность к самостоятельному построению новых элементов из углекислоты и других

Источники энергии, поддерживающие их жизнедеятельность, обусловливают их деление на фотоафтотрофы (источник - свет) и хемоавтотрофы (источник - минеральные вещества). А в зависимости от названия субстрата, который окисляют хемоавтортофы, они разделяются на водородные и нитрифицирующие бактерии, а также на серо- и железобактерии.

Данная статья будет посвящена наиболее распространенной среди них группе - нитрофицирующим бактериям.

История открытия

Еще в середине 19 века немецкими учеными было доказано, что процесс нитрификации является биологическим. Опытным путем они показали, что при добавлении к канализационным водам хлороформа останавливалось окисление аммиака. Но объяснить, почему так происходит, они не смогли.

Это удалось сделать несколькими годами позже русскому ученому Виноградскому. Он выделил две группы бактерий, которые поэтапно брали участие в процессе нитрификации. Так, одна группа обеспечивала окисление аммония до а уже вторая группа бактерий отвечала за ее превращение в азотную. Все задействованные в этом процессе нитрифицирующие бактерии являются грамотрицательными.

Особенности процесса окисления

Процесс образования нитритов путем окисления аммония имеет несколько этапов, в ходе которых образуются азотсодержащие соединения с различной степенью окисленности группы NH.

Первым продуктом окисления аммония является гидроксиламин. Вероятней всего, он образуется из-за включения молекулярного кислорода в группу NH 4 , хотя окончательно этот процесс не доказан и остается дискутабельным.

Далее гидроксиламин превращается в нитрит. Предположительно, процесс осуществляется через образование NOH (гипонитрита) с выделением закиси азота. В этом случае ученые считают продукцию всего лишь побочным продуктом синтеза, из-за восстановления нитрита.

Кроме продукции химических элементов, в ходе денитрофикации выделяется большое количество энергии. Подобно происходящему у гетеротрофных аэробных организмов, в данном случае синтез молекул АТФ связан с окислительно-восстановительными процессами, в результате которых на кислород передаются электроны.

При окислении нитрита большую роль играет процесс обратного транспорта электронов. Включение его электронов в цепь происходит непосредственно в цитохромах (С-типа и/или А-типа), а для этого требуется достаточно большие затраты энергии. Как результат, хемоавтотрофные нитрифицирующие бактерии полностью обеспечены нужным запасом энергии, которая используется для процессов построения и усвоения углекислоты.

Виды нитрифицирующих бактерий

В первой фазе нитрификации берут участие четыре рода нитробактерий:

  • нитросомонас;
  • нитроцистис;
  • нитросолюбус;
  • нитрососпира.

Кстати, на предложенном изображении вы можете видеть нитрифицирующие бактерии (фото под микроскопом).

Экспериментальным путем среди них достаточно сложно, а зачастую и вовсе невозможно выделить одну из культур, поэтому их рассмотрение преимущественно комплексное. Все из перечисленных микроорганизмов имеют размер до 2-2,5 мкм и преимущественно овальную или округлую форму (за исключением нитроспиры, которые имеют вид палочки). Они способны к бинарному делению и направленному движению за счет жгутиков.

Во второй фазе нитрификации принимают участие:

  • род нитробактер;
  • род нитроспина;
  • нитрококус.

Наиболее изучен штамм бактерий рода нитрбактер, имеющий название в честь своего первооткрывателя Виноградского. Эти бактерии нитрифицирующие имеют грушевидную форму клеток, размножаются почкованием, с образованием подвижной (за счет жгутика) дочерней клетки.

Строение бактерий

Исследованные нитрифицируюшие бактерии имеют схожее клеточное строение с другими грамотрицательными микроорганизмами. Некоторые из них имеют достаточно развитую систему внутренних мембран, образующих стопку в центре клетки, тогда как у других они располагаются больше по периферии или образуют структуру в виде чаши, состоящую из нескольких листков. По всей видимости, именно с этими образованиями связаны ферменты, которые участвуют в процессе окисления нитрификаторами специфических субстратов.

нитрифицирующих бактерий

Нитробактерии относятся к облигатным автотрофам, поскольку не способны использовать экзогенные Однако экспериментальным путем все же показана способность некоторых штаммов нитрифицирующих бактерий использовать некоторые органические соединения.

Было выявлено, что субстрат, содержащий дрожжевые автолизаты, серин и глутамат в низких концентрациях, стимулирующим образом воздействовал на рост нитробактерий. Это происходит как при наличии нитрита, так и при его отсутствии в хотя процесс протекает гораздо медленнее. И наоборот, при наличии нитрита процесс окисления ацетата подавляется, но значительно увеличивается включение его углерода в белок, различные аминокислоты и другие клеточные компоненты.

В результате множественных экспериментов были получены данные о том, что бактерии нитрифицирующие все же могут переключаться на гетеротрофное питание, но насколько продуктивно и как долго они могут существовать в таких условиях, еще предстоит выяснить. Пока данные достаточно противоречивы, чтобы делать окончательные умозаключения по этому поводу.

Среда обитания и значение нитрифицирующих бактерий

Нитрифицирующие бактерии относятся к хемоавтотрофам и имеют широкое распространение в природе. Они встречаются повсеместно: в почве, различных субстратах, а также водоемах. Процесс их жизнедеятельности вносит большой вклад в общий и в действительности может достигать огромных масштабов.

Например, такой микроорганизм, как нитроцистис океанус, выделенный из Атлантического океана, относится к облигатным галофилам. Он может существовать только в морской воде или субстратах, содержащих ее. Для таких микроорганизмов важна не только среда обитания, но и такие константы, как рН и температура.

Все известные нитрифицирующие бактерии относят к облигатным аэробам. Для того чтобы окислить аммоний в азотистую кислоту, а азотистую кислоту в азотную, им нужен кислород.

Условия обитания

Еще одним важным моментом, который выявили ученые, стало то, что место, где живут нитрифицирующие бактерии, не должно содержать органических веществ. Была выдвинута теория, что эти микроорганизмы в принципе не могут использовать органические соединения из вне. Их даже назвали облигатными автотрофами.

В последующем неоднократно было доказано пагубное влияние глюкозы, мочевины, пептона, глицерина и другой органики на бактерии нитрифицирующие, но эксперименты не останавливаются.

Значение нитрифицирующих бактерий для почвы

До недавнего времени считалось, что нитрификаторы благоприятно влияют на почву, увеличивая ее плодородность путем расщепления аммония до нитратов. Последние не только хорошо абсорбируются растениями, но и сами по себе повышают растворимость некоторых минеральных веществ.

Однако, в последние годы научные взгляды претерпевают изменения. Выявлено отрицательное действие описываемых микроорганизмов на плодородность почвы. Бактерии нитрифицирующие, образуя нитраты, подкисляют среду, что не всегда является положительным моментом, а также в большей степени провоцируют насыщение почвой ионов аммония, чем нитратов. Более того, нитраты имеют способность восстанавливаться до N 2 (в процессе денитрифакации), что в свою очередь ведет к обеднению почвы азотом.

В чем опасность нитрифицирующих бактерий?

Некоторые штаммы нитробактерий в присутствии органического субстрата могут окислять аммоний, образовывая гидроксиламин, а в последующем нитриты и нитраты. Также в результате таких реакций могут возникать гидроксамовые кислоты. Более того, ряд бактерий осуществляет процесс нитрификации различных соединений, в состав которых входит азот (оксимы, амины, амиды, гидроксаматы и другие нитросоединения).

Масштабы гетеротрофной нитрификации при определенных условиях могут быть не только огромными, но и весьма пагубными. Опасность заключается в том, что в ходе таких превращений происходит образование токсических веществ, мутагенов и канцерогенов. Поэтому ученые пристально работают над изучением данной темы.

Биологический фильтр, который всегда под рукой

Нитрифицирующие бактерии - это не абстрактное понятие, а весьма распространенная форма жизни. Более того, они часто используются человеком.

Например, в состав биологических фильтров для аквариумов входят именно эти бактерии. Данный вид очистки менее затратный и не такой трудоемкий, как механическая очистка, но в тоже время требует соблюдения определенных условий, чтобы обеспечить рост и жизнедеятельность нитрифицирующим бактериям.

Наиболее благоприятным микроклиматом для них является температура окружающей среды (в данном случае воды) порядка 25-26 градусов Цельсия, постоянный приток кислорода и наличие водных растений.

Нитрифицирующие бактерии в сельском хозяйстве

Для того чтобы повысить урожайность, аграрии используют различные удобрения, содержащие нитрифицирующие бактерии.

Питание почвы в таком случае обеспечивается нитробактериями и азотобактериями. Эти бактерии извлекают из почвы и воды необходимые вещества, которые в процессе окисления образуют достаточно большое количество энергии. Это так называемый процесс хемосинтеза, когда полученная энергия идет на образование сложных молекул органического происхождения из углекислого газа и воды.

Для этих микроорганизмов не обязательно поступление питательных веществ с окружающей их среды - они могут продуцировать их самостоятельно. Так, если зеленым растениями, которые также являются автотрофами, необходим солнечный свет, то для нитрифицирующих бактерий он не обязателен.

Самоочистка почвы

Почва - это идеальный субстрат для роста и размножения не только растений, но и множества живых организмов. Поэтому крайне важно ее нормальное состояние и сбалансированный состав.

Следует помнить, что биологическую очистку почвы обеспечивают в том числе и нитрифицирующие бактерии. Они, находясь в почве, водоемах или перегное, превращают аммиак, который выделяют другие микроорганизмы и отходные органические материалы, в нитраты (если быть более точными, то в соли азотной кислоты). Весь процесс состоит из двух этапов:

  1. Окисление аммиака до нитрита.
  2. Окисление нитрита до нитрата.

При этом каждый этап обеспечивается отдельными видами микроорганизмов.

Так называемый замкнутый круг

Кругооборот энергии и поддержание жизни на Земле возможно благодаря соблюдению определенных закономерностей существования всего живого. На первый взгляд трудно понять, о чем идет речь, но на самом деле все достаточно просто.

Давайте представим следующую картинку из школьного учебника:

  1. Неорганические вещества перерабатываются микроорганизмами и тем самым создают благоприятные условия в почве для роста и питания растений.
  2. Они, в свою очередь, являются незаменимым источником энергии для большинства травоядных животных.
  3. Следующей цепочкой этого жизненного звена являются хищники, энергией для которых являются, соответственно, их травоядные собратья.
  4. Люди, как известно, относятся к высшим хищникам, а это значит, что мы можем получать энергию как от растительного мира, так и от животного.
  5. А уже наши собственные остатки жизнедеятельности, а также тех самых растений и животных, служат питательным субстратом для микроорганизмов.

Таким образом, получается замкнутый круг, непрерывно функционирующий и обеспечивающий жизнь всего живого на Земле. Зная эти принципы, не сложно представить, насколько многогранна и на самом деле безгранична сила природы и всего живого.

Заключение

В данной статье мы попытались дать ответ на вопрос, что такое нитрифицирующие бактерии в биологии. Как видите, несмотря на неопровержимые доказательства жизнедеятельности, функционирования и влияния этих микроорганизмов, существует еще множество спорных вопросов, требующих дальнейших экспериментальных исследований.

Нитрифицирующие бактерии относят к хемотрофам. Источником энергии для них служат различные минеральные вещества. Несмотря на свои микроскопические размеры, эти живые организмы оказывают огромное влияние на окружающий их мир.

Как известно, хемотрофы не могут усваивать органические соединения, которые находятся в субстрате (почвенном или водном). Они, наоборот, продуцируют строительный материал для создания живой и функционирующей клетки.

 


Читайте:



Николас отнер - код исцеления методом простукивания

Николас отнер - код исцеления методом простукивания

Николас Отнер Код исцеления методом простукивания © 2013 by Nik Ortner © Нехлебова Н., перевод на русский язык, 2014 © ООО «Издательство АСТ»,...

Екатерина Богданова - Пансион искусных фавориток

Екатерина Богданова - Пансион искусных фавориток

Екатерина Богданова Пансион искусных фавориток. Борьба за власть Императрица… Должно быть, для большинства обывателей это слово является символом...

Черное и белое: цитаты, афоризмы и высказывания За черной полосой всегда идет белая цитаты

Черное и белое: цитаты, афоризмы и высказывания За черной полосой всегда идет белая цитаты

При смешивании черного и белого получается новый цвет, при добавлении молока в кофе рождается новый вкус, две противоположности, мужчина и женщина,...

Самые древние государства мира Самая старая страна из существу

Самые древние государства мира Самая старая страна из существу

Первые государства появились около 6000 лет назад, но далеко не все смогли дожить до наших дней. Некоторые исчезли навсегда, от других осталось...

feed-image RSS