Реклама

Главная - Шри Раджниш Ошо
Молекулы виды связей в молекулах молекулярные спектры. Строение и спектры молекул. Химические связи и строение молекул

Спектром называется последовательность квантов энергии электромагнитного излучения, поглощенных, выделившихся, рассеянных или отраженных веществом при переходах атомов и молекул из одних энергетических состояний в другие.

В зависимости от характера взаимодействия света с веществом спектры можно разделить на спектры поглощения (абсорбционные); испускания (эмиссионные); рассеяния и отражения.

По изучаемым объектам оптическая спектроскопия, т.е. спектроскопия в области длин волн 10 -3 ÷10 -8 м подразделяется на атомную и молекулярную.

Атомный спектр представляет собой последовательность линий, положение которых определяется энергией перехода электронов с одних уровней на другие.

Энергию атома можно представить как сумму кинетической энергии поступательного движения и электронной энергии :

где - частота, - длина волны, - волновое число, - скорость света, - постоянная Планка.

Так как энергия электрона в атоме обратно пропорциональна квадрату главного квантового числа , то для линии в атомном спектре можно записать уравнение:


.
(4.12)

Здесь - энергии электрона на более высоком и более низком уровнях; - постоянная Ридберга; - спектральные термы, выраженные в единицах измерения волновых чисел (м -1 , см -1).

Все линии атомного спектра сходятся в коротковолновой области к пределу, определенному энергией ионизации атома, после которого идет сплошной спектр.

Энергию молекулы в первом приближении можно рассмотреть как сумму поступательной, вращательной, колебательной и электронной энергий:


(4.15)

Для большинства молекул такое условие выполняется. Например, для Н 2 при 291К отдельные составляющие полной энергии различаются на порядок и более:

309,5 кДж/моль,

=25,9 кДж/моль,

2,5 кДж/моль,

=3,8 кДж/моль.

Значения энергии квантов в различных областях спектра сопоставлены в таблице 4.2.

Таблица 4.2 - Энергия поглощенных квантов различных областей оптического спектра молекул

Понятия «колебания ядер» и «вращение молекул» являются условными. В действительности такие виды движения лишь очень приближенно передают представления о распределении ядер в пространстве, которое носит такой же вероятностный характер, что и распределение электронов.



Схематичная система уровней энергии в случае двухатомной молекулы представлена на рисунке 4.1.

Переходы между вращательными уровнями энергии приводит к появлению вращательных спектров в дальней ИК и микроволновой областях. Переходы между колебательными уровнями в пределах одного электронного уровня дают колебательно-вращательные спектры в ближней ИК области, поскольку изменение колебательного квантового числа неминуемо влечет за собой изменение и вращательного квантового числа . Наконец, переходы между электронными уровнями вызывают появление в видимой и УФ областях электронно-колебательно-вращательных спектров.

В общем случае число переходов может быть очень велико, но на самом деле в спектрах проявляются далеко не все. Количество переходов ограничено правилами отбора .

Молекулярные спектры дают богатую информацию. Они могут быть использованы:

Для идентификации веществ в качественном анализе, т.к. каждое вещество имеет свой собственный только ему присущий спектр;

Для количественного анализа;

Для структурно-группового анализа, поскольку определенные группы, такие, например, как >С=О, _ NH 2 , _ OH и др. дают в спектрах характеристические полосы;

Для определения энергетических состояний молекул и молекулярных характеристик (межъядерное расстояние, момент инерции, собственные частоты колебаний, энергии диссоциации); комплексное изучение молекулярных спектров позволяет сделать выводы о пространственном строении молекул;



В кинетических исследованиях, в том числе для изучения очень быстрых реакций.

- энергии электронных уровней;

Энергии колебательных уровней;

Энергии вращательныхуровней

Рисунок 4.1 – Схематичное расположение уровней энергии двухатомной молекулы

Закон Бугера-Ламберта-Бера

В основе количественного молекулярного анализа с использованием молекулярной спектроскопии лежит закон Бугера-Ламберта-Бера , связывающий интенсивность света падающего и прошедшего с концентрацией и толщиной поглощающего слоя (рисунок 4.2):

или с коэффициентом пропорциональности:

Результат интегрирования:

(4.19)
. (4.20)

При уменьшении интенсивности падающего света на порядок

. (4.21)

Если =1 моль/л, то , т.е. коэффициент поглощения равен обратной толщине слоя, в котором при концентрации, равной 1, интенсивность падающего света уменьшается на порядок.

Коэффициенты поглощения и зависят от длины волны. Вид этой зависимости является своеобразным «отпечатком пальцев» молекул, что используется в качественном анализе для идентификации вещества. Эта зависимость характерна и индивидуальна для того или иного вещества и отражает характеристические группы и связи, входящие в молекулу.

Оптическая плотность D

выражаемое в %

4.2.3 Энергия вращения двухатомной молекулы в приближении жесткого ротатора. Вращательные спектры молекул и их применение для определения молекулярных характеристик

Появление вращательных спектров связано с тем, что вращательная энергия молекулы квантуется, т.е.

0
а
Энергия вращения молекулы вокруг оси вращения

Поскольку точкаO является центром тяжести молекулы, то:

Введение обозначения приведенной массы :

(4.34)

приводит к уравнению

. (4.35)

Таким образом, двухатомную молекулу (рисунок 4.7а ), вращающуюся вокруг оси или , проходящей через центр тяжести, можно упрощенно рассматривать как частицу с массой , описывающую круг с радиусом вокруг точкиO (рисунок 4.7б ).

Вращение молекулы вокруг оси дает момент инерции, практически равный нулю, поскольку радиусы атомов значительно меньше межъядерного расстояния. Вращениеотносительно осей или , взаимно перпендикулярных линии связи молекулы, приводит к равным по величине моментам инерции:

где - вращательное квантовое число, принимающее только целочисленные значения

0, 1, 2…. В соответствии с правилом отбора для вращательного спектра двухатомной молекулы изменение вращательного квантового числа при поглощении кванта энергии возможно лишь на единицу, т.е.

преобразует уравнение (4.37) в вид:

20 12 6 2

волновое число линии во вращательном спектре, соответствующей поглощению кванта при переходе с j уровня энергии на уровень j +1, можно вычислить по уравнению:

Таким образом, вращательный спектр в приближении модели жесткого ротатора представляет собой систему линий, находящихся на одном и том же расстоянии друг от друга (рисунок 4.5б). Примеры вращательных спектров двухатомных молекул, оцененных в моделижесткий ротатор, представлены на рисунке 4.6.

а б

Рисунок 4.6 – Вращательныe спектры HF (а ) иCO (б )

Для молекул галогеноводородов этот спектр смещен в дальнюю ИК область спектра, для более тяжелых молекул – в микроволновую.

Исходя из полученных закономерностей возникновения вращательного спектра двухатомной молекулы, на практике сперва определяют расстояние между соседними линиями в спектре , из которого далее находят , и по уравнениям:

, (4.45)

где - постоянная центробежного искажения , связана с вращательной постоянной примерным соотношением . Поправку следует учитывать лишь при очень больших j .

Для многоатомных молекул в общем случае возможно существование трех разных моментов инерции . При наличии в молекуле элементов симметрии моменты инерции могут совпадать или даже быть равными нулю. Например, для линейных многоатомных молекул (CO 2 , OCS, HCN и др.)

где - положение линии, отвечающей вращательному переходу в изотопозамещенной молекуле.

Для вычисления величины изотопного сдвига линии необходимо последовательно рассчитать приведенную массу изотопозамещенной молекулы с учетом изменения атомной массы изотопа, момент инерции , вращательную постоянную и положение линии в спектре молекулы по уравнениям (4.34), (4.35), (4.39) и (4.43), соответственно, или оценить отношение волновых чисел линий, отвечающих одному и тому же переходу в изотопозамещенной и неизотопозамещенной молекулах, и далее определить направление и величину изотопного сдвига по уравнению (4.50). Если межъядерное расстояние приближенно считать постоянным , то отношение волновых чисел соответствует обратному отношению приведенных масс:

где - общее число частиц, - число частиц наi - том уровне энергии при температуре T , k – постоянная Больцмана, - статистический ве сили степень вырождения i -того уровня энергии, характеризует вероятность нахождения частиц на данном уровне.

Для вращательного состояния заселенность уровня характеризуют обычно отношением числа частицнаj - том уровне энергии к числу частиц на нулевом уровне :


,
(4.53)

где - статистический вес j -того вращательного уровня энергии, отвечает числу проекций количества движения вращающейся молекулы на ее ось – линию связи молекулы, , энергия нулевого вращательного уровня . Функция проходит через максимум при увеличении j , как иллюстрирует рисунок 4.7 на примере молекулы CO.

Экстремум функции соответствует уровню с максимальной относительной заселенностью, значение квантового числа которого можно вычислить по уравнению, полученному после определения производной функции в экстремуме:


.
(4.54)

Рисунок 4.7 – Относительная заселенность вращательных уровней энергии

молекулыCO при температурах 298 и 1000 К

Пример. Во вращательном спектреHI определено расстояние между соседними линиями см -1 . Рассчитайте вращательную постоянную, момент инерции и равновесное межъядерное расстояние в молекуле.

Решение

В приближении модели жесткого ротатора в соответствии с уравнением (4.45) определяем вращательную постоянную:

см -1 .

Момент инерции молекулы вычисляем из значения вращательной постоянной по уравнению (4.46):

кг . м 2 .

Для определения равновесного межъядерного расстоянияиспользуем уравнение (4.47), учитывая, что массы ядер водорода и йода выражены в кг:

Пример. В дальней ИК-области спектра 1 H 35 Cl обнаружены линии, волновые числа которых:

Определите усредненные значения момента инерции и межъядерного расстояния молекулы. Отнесите наблюдаемые линии в спектре к вращательным переходам.

Решение

Согласно модели жесткого ротатора разность волновых чисел соседних линий вращательного спектра постоянна и равна 2 . Определим вращательную постоянную по среднему значению расстояний между соседними линиями в спектре:

см -1 ,

см -1

Находим момент инерции молекулы (уравнение (4.46)):

Рассчитываем равновесное межъядерное расстояние (уравнение (4.47)), принимая во внимание, что массы ядер водорода и хлора (выражены в кг):

По уравнению (4.43) оцениваем положение линий во вращательном спектре 1 H 35 Cl:

Соотносим рассчитанные значения волновых чисел линий с экспериментальными. Получается, что наблюдаемые во вращательном спектре 1 H 35 Cl линии соответствуют переходам:

N линии
, см -1 85.384 106.730 128.076 149.422 170.768 192.114 213.466
3 4 4 5 5 6 6 7 7 8 8 9 9 10

Пример. Определите величину и направление изотопного сдвига линии поглощения, отвечающей переходу с энергетический уровень, во вращательном спектре молекулы 1 H 35 Cl при замещении атома хлора на изотоп 37 Cl. Межъядерное расстояние в молекулах 1 H 35 Clи 1 H 37 Clсчитать одинаковым.

Решение

Для определения величины изотопного сдвига линии, отвечающей переходу , рассчитываем приведенную массу молекулы 1 H 37 Cl с учетом изменения атомной массы 37 Cl:

далее вычисляем момент инерции , вращательную постоянную и положение линии в спектре молекулы 1 H 37 Clи величину изотопного сдвига по уравнениям (4.35), (4.39), (4.43) и (4.50), соответственно.

Иначеизотопный сдвиг можно оценитьиз отношения волновых чисел линий, отвечающих одному и тому же переходу в молекулах, (межъядерное расстояние считаем постоянным) и далее положение линии в спектре, используя уравнение (4.51).

Для молекул 1 H 35 Cl и 1 H 37 Cl отношение волновых чисел заданного перехода равно:

Для определения волнового числа линии изотопозамещенной молекулы подставляем найденное в предыдущем примере значение волнового числа перехода j j +1 (3→4):

Делаем вывод: изотопный сдвиг в низкочастотную или длинноволновую область составляет

85.384-83.049=2.335 см -1 .

Пример. Рассчитайте волновое число и длину волны наиболее интенсивной спектральной линии вращательного спектра молекулы 1 H 35 Cl. Соотнесите линию с соответствующим вращательным переходом.

Решение

Наиболее интенсивная линия во вращательном спектре молекулы связана с максимальной относительной заселенностью вращательного уровня энергии.

Подстановка найденного в предыдущем примере значения вращательной постоянной для 1 H 35 Cl ( см -1) в уравнение (4.54) позволяет вычислить номер этого уровня энергии:

.

Волновое число вращательного перехода с этого уровня рассчитываем по уравнению (4.43):

Длину волны перехода находим из преобразованного относительно уравнения (4.11):


4.2.4 Многовариантное задание № 11 «Вращательные спектры двухатомных молекул»

1. Напишите квантово-механическое уравнение для расчета энергии вращательного движения двухатомной молекулы как жесткого ротатора.

2. Выведите уравнение для расчета изменения энергии вращения двухатомной молекулы как жесткого ротатора при переходе ее на соседний, более высокий квантовый уровень .

3. Выведите уравнение зависимости волнового числа вращательных линий в спектре поглощения двухатомной молекулы от вращательного квантового числа.

4. Выведите уравнение для расчета разности волновых чисел соседних линий во вращательном спектре поглощения двухатомной молекулы.

5. Рассчитайте вращательную постоянную (в см -1 и м -1) двухатомной молекулы A по волновым числам двух соседних линий в длинноволновой инфракрасной области вращательного спектра поглощения молекулы (см. таблицу 4.3) .

6. Определите энергию вращения молекулы A на первых пяти квантовых вращательных уровнях (Дж).

7. Вычертите схематически энергетические уровни вращательного движения двухатомной молекулы как жесткого ротатора.

8. Нанесите пунктиром на эту схему вращательные квантовые уровни молекулы, не являющейся жестким ротатором.

9. Выведите уравнение для вычисления равновесного межъядерного расстояния на основании разности волновых чисел соседних линий во вращательном спектре поглощения.

10. Определите момент инерции (кг. м 2) двухатомной молекулы A .

11. Рассчитайте приведенную массу (кг) молекулыA .

12. Вычислите равновесное межъядерное расстояние () молекулы A . Сопоставьте полученное значение со справочными данными.

13. Отнесите наблюдаемые линии во вращательном спектре молекулы A к вращательным переходам.

14. Рассчитайте волновое число спектральной линии, отвечающей вращательному переходу с уровня j для молекулы A (см. таблицу 4.3).

15. Вычислите приведенную массу (кг) изотопозамещенной молекулы B .

16. Рассчитайте волновое число спектральной линии, связанной с вращательным переходомс уровня j для молекулы B (см. таблицу 4.3). Межъядерные расстояния в молекулах A и B считать равными.

17. Определите величину и направление изотопного сдвига во вращательных спектрах молекул A и B для спектральной линии, отвечающей переходус вращательного уровня j .

18. Объясните причину немонотонного изменения интенсивности линийпоглощенияпо мере увеличения энергии вращения молекулы

19. Определите квантовое число вращательного уровня, отвечающего наибольшей относительной заселенности. Рассчитайте длины волн наиболее интенсивных спектральных линий вращательных спектров молекул A и B .

Кроме спектров, соответствующих излучению отдельных атомов, наблюдаются еще спектры, излучаемые целыми молекулами (§ 61). Молекулярные спектры гораздо разнообразнее и сложнее по своей структуре, чем атомные спектры. Здесь наблюдаются сгущающиеся последовательности линий, похожие на спектральные серии атомов, но с другим законом частот и с настолько близко расположенными линиями, что они сливаются в сплошные полосы (рис. 279). Ввиду своеобразного характера этих спектров они носят название полосатых.

Рис. 279. Полосатый спектр

Наряду с этим наблюдаются последовательности равноотстоящих спектральных линий и, наконец, многолинейчатые спектры, в которых, на первый взгляд, трудно установить какие-либо закономерности (рис. 280). Следует отметить, что при исследовании спектра водорода мы всегда имеем наложение молекулярного спектра На на атомарный спектр, и приходится принимать специальные меры для увеличения интенсивности линий, излучаемых отдельными атомами водорода.

Рис. 280. Молекулярный спектр водорода

С квантовой точки зрения, так же как и в случае атомных спектров, каждая линия молекулярного спектра излучается при переходе молекулы с одного стационарного энергетического уровня на другой. Но в случае молекулы существует гораздо больше факторов, от которых зависит энергия стационарного состояния.

В самом простом случае двухатомной молекулы энергия слагается из трех частей: 1) энергии электронной оболочки молекулы; 2) энергии колебаний ядер атомов, входящих в состав молекулы, вдоль прямой, их соединяющей; 3) энергии вращения ядер вокруг общего центра масс. Все три вида энергии квантованы, т. е. могут принимать только дискретный ряд значений. Электронная оболочка молекулы образуется в результате слияния электронных оболочек атомов, входящих в состав молекулы. Энергетические электронные состояния молекул можно рассматривать как предельный случай

очень сильного эффекта Штарка, вызванного межатомным взаимодействием атомов, образующих молекулу. Хотя силы, связывающие атомы в молекулы, имеют чисто электростатическую природу, правильное понимание химической связи оказалось возможным только в рамках современной волномеханической квантовой теории.

Различают два типа молекул: гомеополярные и гетерополярные. Гомеополярные молекулы при увеличении расстояния между ядрами распадаются на нейтральные части. К числу гемеополярных молекул относятся молекулы Гетерополярные молекулы при увеличении расстояния между ядрами распадаются на положительный и отрицательный ионы. Характерным примером гетерополярных молекул являются молекулы солей, например и т. д. (т. I, § 121, 130, 1959 г.; в пред. изд. § 115 и 124 и т. II, § 19, 22, 1959 г.; в пред. изд. § 21 и 24).

Энергетические состояния электронного облака гомеополярной молекулы определяются в значительной мере волновыми свойствами электронов.

Рассмотрим очень грубую модель самой простой молекулы (ионизированной молекулы водорода представляющую две потенциальные «ямы», находящиеся на близком расстоянии друг от друга и разделенные «барьером» (рис. 281).

Рис. 281. Две потенциальные ямы.

Рис. 282. Волновые функции электрона в случае далеких «ям».

Каждая из «ям» изображает один из атомов, входящих в состав молекулы. При большом расстоянии между атомами электрон в каждом из них обладает квантованными значениями энергии, соответствующими стоячим электронным волнам в каждой из «ям» в отдельности (§ 63). На рис. 282, а и б изображены две одинаковые волновые функции описывающие состояние электронов, находящихся в изолированных атомах. Этим волновым функциям соответствует один и тот же энергетический уровень.

При сближении атомов в молекулу «барьер» между «ямами» становится «прозрачным» (§ 63), ибо его ширина делается соизмеримой с длиной электронной волны. В результате этого возникает

обмен электронами между атомами сквозь «барьер», и теряет смысл говорить о принадлежности электрона тому или иному атому.

Волновая функция теперь может иметь две формы: в и г (рис. 283). Случай в приближенно может рассматриваться как результат сложения кривых а и б (рис. 282), случай как разность а и б, но энергии, соответствующие состояниям в и г, уже не равны точно друг другу. Энергия состояния в несколько меньше энергии состояния Таким образом, из каждого атомного уровня возникают два молекулярных электронных уровня.

Рис. 283. Волновые функции электрона в случае близких «ям».

До сих пор речь шла о ионе молекулы водорода, обладающем одним электроном. В нейтральной молекуле водорода два электрона, что приводит к необходимости учитывать взаимное расположение их спинов. В согласии с принципом Паули электроны с параллельными спинами как бы «избегают» друга, поэтому плотность вероятности нахождения каждого электрона распределена соответственно рис. 284, а, т. е. электроны чаще всего находятся вне промежутка между ядрами. Поэтому при параллельных спинах не может образоваться устойчивая молекула. Наоборот, антипараллельные спины соответствуют наибольшей вероятности нахождения обоих электронов внутри промежутка между ядрами (рис. 294, б). В этом случае отрицательный электронный заряд притягивает к себе оба положительных ядра и вся система в целом образует устойчивую молекулу.

У гетерополярных молекул картина распределения плотности электронного заряда имеет гораздо более классический характер. Около одного из ядер группируется избыток электронов, около другого, наоборот, имеет место недостаток электронов. Таким образом, в составе молекулы образуются два иона, положительный и отрицательный, которые притягиваются друг к другу: в например, и

Символика электронных состояний молекул имеет много сходства с атомной символикой. Естественно, что в молекуле основную роль играет направление оси, соединяющей ядра. Здесь вводится квантовое число А, аналогичное I в атоме. Квантовое число характеризует абсолютное значение проекции на ось молекулы результирующего орбитального момента электронного облака молекулы.

Между значениями и символами молекулярных электронных состояний существует соответствие, аналогичное имеющему место в атомах (§ 67):

Абсолютное значение проекции результирующего спина электронного облака на ось молекулы характеризуют квантовым числом 2, а проекцию полного вращательного момента электронной оболочки - квантовым числом Очевидно, что

Квантовое число аналогично внутреннему квантовому числу атома (§ 59 и 67).

Рис. 284. Плотность вероятности нахождения электрона в различных точках молекулы.

Так же как у атомов, у молекул наблюдается мультиплетность, вызванная различной ориентацией результирующего спина по отношению к результирующему орбитальному моменту.

Учитывая эти обстоятельства, электронные состояния молекул записывают следующим образом:

где 5 - величина результирующего спина, а означает один из символов или А, соответствующих различным значениям квантового числа А. Например, нормальное состояние молекулы водорода есть 2, нормальное состояние молекулы гидроксила есть нормальное состояние молекулы кислорода есть . При переходах между различными электронными состояниями имеют место правила отбора: .

Колебательная энергия молекулы, связанная с колебаниями ядер, квантуется, исходя из учета волновых свойств ядер. Принимая, что ядра в молекуле связаны квазиупругой силой (потенциальная энергия частицы пропорциональна квадрату смещения, § 63), мы из уравнения Шредингера получаем следующие дозволенные значения колебательной энергии этой системы (гармонического

осциллятора):

где частота собственных колебаний ядер, определяемая, как обычно (т. I, § 57, 1959 г.; в пред. изд. § 67):

где приведенная масса ядер; массы обоих ядер; квазиупругая константа молекулы; квантовое число, равное Вследствие большой величины массы частота лежит в инфракрасной области спектра.

Рис. 285. Уровни колебательной энергии молекулы.

Квазиупругая константа зависит от конфигурации электронной оболочки и поэтому различна для различных электронных состояний молекулы. Эта константа тем больше, чем прочнее молекула, т. е. чем сильнее химическая связь.

Формуле (3) соответствует система равноотстоящих энергетических уровней, расстояние между которыми равно На самом деле при больших амплитудах колебаний ядер уже начинают сказываться отступления возвращающей силы от закона Гука. В результате энергетические уровни сближаются (рис. 285). При достаточно больших амплитудах наступает диссоциация молекулы на части.

Для гармонического осциллятора разрешены переходы только при , что соответствует испусканию или поглощению света частоты За счет отступлений от гармоничности появляются переходы, соответствующие

Согласно квантовому условию для частот (§ 58) при этом должны появиться обертоны что и наблюдается в спектрах молекул.

Колебательная энергия представляет собой сравнительно небольшую добавку к энергии электронного облака молекулы. Колебания ядер приводят к тому, что каждый электронный уровень превращается в систему близких уровней, соответствующих различным величинам колебательной энергии (рис. 286). Этим не исчерпывается сложность системы энергетических уровней молекулы.

Рис. 286. Сложение колебательной и электронной энергии молекулы.

Необходимо еще учесть самую небольшую составляющую молекулярной энергии - вращательную энергию. Дозволенные значения вращательной энергии определяются, согласно волновой механике, на основании принципа квантования вращательного момента.

Согласно волновой механике вращательный момент (§ 59) любой квантованной системы равен

В данном случае заменяет и равно 0, 1, 2, 3 и т. д.

Кинетическая энергия вращающегося тела в пред. изд. § 42) будет

где момент инерции, со - угловая скорость вращения.

Но, с другой стороны, вращательный момент равен Отсюда получаем:

или, подставляя вместо выражение (5), окончательно находим:

На рис. 287 изображены вращательные уровни молекулы; в отличие от колебательных и атомных уровней расстояние между вращательными уровнями увеличивается с ростом Между вращательными уровнями разрешены переходы при при этом испускаются линии с частотами

где Евращ соответствует соответствует

Формула (9) дает для частот

Рис. 287. Уровни вращательной энергии молекулы.

Мы получаем равноотстоящие спектральные линии, лежащие в далекой, инфракрасной части спектра. Измерение частот этих линий дает возможность определить момент инерции молекулы Оказалось, что моменты инерции молекул порядка Следует заметить, что сам момент инерции I вследствие действия

центробежных сил увеличивается с ростом скорости вращения молекулы. Наличие вращений приводит к расщеплению каждого колебательного энергетического уровня на ряд близких подуровней, соответствующих различным значениям вращательной энергии.

При переходах молекулы из одного энергетического состояния в другое могут одновременно изменяться все три вида энергии молекулы (рис. 288). В результате каждая спектральная линия, испускавшаяся бы при электронно-колебательном переходе, приобретает тонкую вращательную структуру и превращается в типичную молекулярную полосу.

Рис. 288. Одновременное изменение всех трех видов энергии молекулы

Такие полосы из равноотстоящих линий наблюдаются у паров и воды и лежат в далекой инфракрасной части спектра. Наблюдают их не в спектре излучения этих паров, а в их спектре поглощения, ибо частоты, соответствующие собственным частотам молекул, поглощаются сильнее остальных. На рис. 289 приведена полоса в спектре поглощения паров в близкой инфракрасной области. Эта полоса соответствует переходам между энергетическими состояниями, отличающимися уже не только энергией вращения, но и энергией колебаний (при постоянной энергии электронных оболочек). В данном случае и и Екол изменяются одновременно, что приводит к большим изменениям энергии, т. е. спектральные линии имеют большую частоту, чем в первом рассмотренном случае.

В соответствии с этим в спектре возникают линии, лежащие в близкой инфракрасной части, подобно изображенным на рис. 289.

Рис. 289. Полоса поглощения.

Центр полосы ( соответствует переходу при постоянной Евращ; согласно правилу отбора такие частоты не испускаются молекулой. Линии с большими частотами - меньшими длинами волн - соответствуют переходам, при которых изменение Евращ прибавляется к изменению Линии с меньшими частотами (правая часть) соответствуют обратному соотношению: изменение вращательной энергии имеет противоположный знак.

Наряду с такими полосами наблюдаются полосы, соответствующие переходам с изменением момента инерции но с В этом случае, согласно формуле (9), частоты линий должны зависеть от и расстояния между линиями становятся неодинаковыми. Каждая полоса состоит из ряда линий, сгущающихся к одному краю,

который называют головой полосы. Для частоты отдельной спектральной линии, входящей в состав полосы, Деландром еще в 1885 г. была дана эмпирическая формула следующего вида:

где целое число.

Формула Деландра вытекает непосредственно из приведенных выше соображений. Формулу Деландра можно изобразить графически, если по одной оси отложить а по другой (рис. 290).

Рис. 290. Графическое изображение формулы Деландра.

Внизу изображены соответствующие линии, образующие, как мы видим, типичную полосу. Поскольку структура молекулярного спектра сильно зависит от момента инерции молекулы, исследование молекулярных спектров является одним из надежных способов определения этой величины. Малейшие изменения в структуре молекулы могут быть обнаружены при исследовании ее спектра. Наиболее интересным является то обстоятельство, что молекулы, содер жащие различные изотопы (§ 86) одного и того же элемента, должны иметь в своем спектре различные линии, соответствующие различным массам этих изотопов. Это вытекает из того, что массы атомов определяют как частоту их колебаний в молекуле, так и ее момент инерции. Действительно, линии полос хлорной меди состоят из четырех компонент соответственно четырем комбинациям изотопов меди 63 и 65 с изотопами хлора 35 и 37:

Так же были обнаружены линии, соответствующие молекулам содержащим тяжелый изотоп водорода, несмотря на то, что концентрация изотопа в обычном водороде равна

Кроме массы ядер на структуры молекулярных спектров влияют и другие свойства ядер. В частности, очень большую роль играют вращательные моменты (спины) ядер. Если в молекуле, состоящей из одинаковых атомов, вращательные моменты ядер равны нулю, выпадает каждая вторая линия вращательной полосы Такой эффект, например, наблюдается у молекулы

Если вращательные моменты ядер отличны от нуля, они могут вызвать чередование интенсивностей во вращательной полосе, слабые линии будут чередоваться с сильными.)

Наконец, пользуясь методами радиоспектроскопии, удалось обнаружить и точно измерить сверхтонкую структуру молекулярных спектров, связанную а квадрупольным электрическим моментом ядер.

Квадрупольный электрический момент возникает в результате отступления формы ядра от сферической. Ядро может иметь форму вытянутого или сплющенного эллипсоида вращения. Такой заряженный эллипсоид уже нельзя заменить просто точечным зарядом, помещенным в центре ядра.

Рис. 291. Поглощающее устройство «атомных» часов: 1 - прямоугольный волновод сечением длиной закрытый с обеих сторон непроницаемыми для газа переборками 7 и заполненный аммиаком при низком давлении;

2 - кристаллический диод, создающий гармоники подводимого к нему высокочастотного напряжения; 3 - выходной кристаллический диод; 4 - генератор модулированного по частоте высокочасто-ного напряжения; 5 - трубопровод к вакуумному насосу и газгольдеру аммиака; 6 - выход к импульсному усилителю; 7 - переборки; И - индикатор тока кристаллического диода; В - вакуумметр.

Кроме кулоновой силы в поле ядра появляется дополнительная сила, обратно пропорциональная четвертой степени расстояния и зависящая от угла с направлением оси симметрии ядра. Появление дополнительной силы связано с наличием квадрупольного момента у ядра.

Впервые наличие квадрупольного момента у ядра было установлено методами обычной спектроскопии по некоторым деталям сверхтонкой структуры атомных линий. Но эти методы не давали возможности точно определить величину момента.

При радиоспектроскопическом методе волновод наполняют исследуемым молекулярным газом и измеряют поглощение радиоволн в газе. Применение клистронов для генерации радиоволн дает возможность получить колебания с высокой степенью монохроматичности, которые затем модулируются. Особенно подробно был исследован спектр поглощения аммиака в области сантиметровых волн., В этом спектре обнаружена сверхтонкая структура, которая объясняется наличием связи между квадрупольным моментом ядра и электрическим полем самой молекулы.

Принципиальное преимущество радиоспектроскопии состоит в малости энергии фотонов, соответствующих радиочастотам. Благодаря этому по поглощению радиочастот можно обнаружить переходы между чрезвычайно близкими энергетическими уровнями атомов и молекул. Кроме ядерных эффектов метод радиоспектроскопии очень удобен для определения электрических дипольных моментов всей молекулы по эффекту Штарка молекулярных линий в слабых электрических

полях. За последние годы появилось огромное число работ, посвященных радиоспектроскопическому методу исследования структуры самых различных молекул Поглощение радиоволн в аммиаке использовано для построения сверхточных «атомных» часов (рис. 291).

Длительность астрономических суток медленно увеличивается и, кроме того, колеблется в пределах Желательно построение часов с более равномерным ходом. «Атомные» часы представляют собой кварцевый генератор радиоволн с частотой, контролируемой по поглощению генерируемых волн в аммиаке. При длине волны 1,25 см наступает резонанс с собственной частотой молекулы аммиака, чему соответствует очень резкая линия поглощения. Малейшее отклонение длины волны генератора от этой величины нарушает резонанс и приводит к сильному увеличению прозрачности газа для радиоизлучения, что регистрируется соответствующей аппаратурой и приводит в действие автоматику, восстанавливающую частоту генератора. «Атомные» часы уже дали ход более равномерный, чем вращение Земли. Предполагается, что удастся достигнуть точности хода порядка долей суток.


Химические связи и строение молекул.

Молекула – наименьшая частица вещества, состоящая из одинаковых или различных атомов, соединенных между собой химическими связями , и являющаяся носителем его основных химических и физических свойств. Химические связи обусловлены взаимодействием внешних, валентных электронов атомов. Наиболее часто в молекулах встреча­ется два типа связи: ионная и ковалентная.

Ионная связь (например, в молекулах NaCl , КВr ) осуществляется электростатичес­ким взаимодействием атомов при переходе электрона от одного атома к другому, т.е. при образовании положительного и отрицательного ионов.

Ковалентная связь (напри­мер, в молекулах Н 2 , C 2 , CO) осуществляется при обобществлении валентных элек­тронов двумя соседними атомами (спины валентных электронов должны быть ан­типараллельны). Ковалентная связь объясняется на основе принципа неразличимости тождественных частиц, например электронов в молекуле водорода. Нераз­личимость частиц приводит к обменному взаимодействию.

Молекула является квантовой системой; она описывается уравнением Шредингера, учитывающим движение электронов в молекуле, колебания атомов молекулы, враще­ние молекулы. Решение этого уравнения – очень сложная задача, которая обычно разбивается на две: для электронов и ядер. Энергия изолированной молекулы:

где – энергия движения электронов относительно ядер, – энергия колебаний ядер (в результате которых периодически изменяется относительное положение ядер), – энергия вращения ядер (в результате которых периодически изменяется ориен­тация молекулы в пространстве). В формуле (13.1) не учтены энергия поступательного движения центра масс молекулы и энергия ядер атомов в молекуле. Первая из них не квантуется, поэтому ее изменения не могут привести к возникновению молекулярного спектра, а вторую можно не учитывать, если не рассматривать сверхтонкую структуру спектральных линий. Доказано, что эВ, эВ, эВ, поэтому >>>>.

Каждая из входящих в выражение (13.1) энергий квантуется (ей соответствует набор дискретных уровней энергии) и определяется квантовыми числами. При переходе из одного энергетического состояния в другое поглощается или испускается энергия DE=hv. При таких переходах одновременно изменяются энергия движения электронов, энергии колебаний и вращения. Из теории и эксперимента следует, что расстояние между вращательными уровнями энергии Dгораздо меньше расстояния между колебательными уровнями D, которое, в свою очередь, меньше расстояния между электронными уровнями D. На рисунке 13.1 схематически представлены уровни энергии двухатомной молекулы (для примера рассмотрены только два электронных уров­ня – показаны жирными линиями).



Строение молекул и свойства их энергетических уровней проявляются в молекулярных спектрах спектрах излучения (поглощения), возникающих при квантовых переходах между уровнями энергии молекул. Спектр излучения молекулы определяется структурой ее энергетических уровней и соответствующими правилами отбора.

Итак, при разных типах переходов между уровнями возникают различные типы молекулярных спектров. Частоты спектральных линий, испускаемых молекулами, мо­гут соответствовать переходам с одного электронного уровня на другой (электронные спектры )или с одного колебательного (вращательного) уровня на другой (колебатель­ные (вращательные) спектры ).Кроме того, возможны и переходы с одними значениями и на уровни, имеющие другие значения всех трех компонентов, в результате чего возникают электронно-колебательные и колебательно-вращательные спектры .

Типичные молекулярные спектры – полосатые, представляющие собой совокуп­ность более или менее узких полос в ультрафиолетовой, видимой и инфракрасной областях.

Применяя спектральные приборы высокой разрешающей способности, можно видеть, что полосы представляют собой настолько тесно расположенные линии, что они с трудом разрешаются. Структура молекулярных спектров различна для разных молекул и с увеличением числа атомов в молекуле усложняется (наблюдаются лишь сплошные широкие полосы). Колебательными и вращательными спектрами обладают только многоатомные молекулы, а двухатомные их не имеют. Это объясняется тем, что двухатомные молекулы не имеют дипольных моментов (при колебательных и вра­щательных переходах отсутствует изменение дипольного момента, что является необ­ходимым условием отличия от нуля вероятности перехода). Молекулярные спектры применяются для исследования строения и свойств молекул, используются в молекулярном спектральном анализе, лазерной спектроскопии, квантовой электронике и т.д.

МОЛЕКУЛЯРНЫЕ СПЕКТРЫ , спектры испускания и поглощения электромагн. излучения и комбинац. рассеяния света, принадлежащие свободным или слабо связанным молекулам . Имеют вид совокупности полос (линий) в рентгеновской, УФ, видимой, ИК и радиоволновой (в т.ч. микроволновой) областях спектра. Положение полос (линий) в спектрах испускания (эмиссионных молекулярных спектров) и поглощения (абсорбционных молекулярных спектров) характеризуется частотами v (длинами волн l = c/v, где с-скорость света) и волновыми числами= 1/l; оно определяется разностью энергий Е" и Е: тех состояний молекулы , между к-рыми происходит квантовый переход :


(h-постоянная Планка). При комбинац. рассеянии величина hv равна разности энергий падающих и рассеянных фотонов. Интенсивность полос (линий) связана с кол-вом (концентрацией) молекул данного вида, заселенностью уровней энергии Е" и Е: и вероятностью соответствующего перехода.

Вероятность переходов с испусканием или поглощением излучения определяется прежде всего квадратом матричного элемента электрич. дипольного момента перехода, а при более точном рассмотрении - и квадратами матричных элементов магн. и электрич. квадрупольного моментов молекулы (см. Квантовые переходы). При комбинац. рассеянии света вероятность перехода связана с матричным элементом наведенного (индуцированного) дипольного момента перехода молекулы , т.е. с матричным элементом поляризуемости молекулы .

Состояния мол. систем, переходы между к-рыми проявляются в виде тех или иных молекулярных спектров, имеют разную природу и сильно различаются по энергии. Уровни энергии нек-рых видов расположены далеко друг от друга, так что при переходах молекула поглощает или испускает высокочастотное излучение. Расстояние между уровнями др. природы бывает мало, а в нек-рых случаях в отсутствие внеш. поля уровни сливаются (вырождаются). При малых разностях энергий переходы наблюдаются в низкочастотной области. Напр., ядра атомов нек-рых элементов обладают собств. магн. моментом и электрич. квадрупольным моментом , связанным со спином . Электроны также имеют магн. момент, связанный с их спином . В отсутствие внеш. поля ориентации магн. моментов произвольны, т.е. они не квантуются и соответствующие энергетич. состояния вырождены. При наложении внеш. постоянного магн. поля происходит снятие вырождения и возможны переходы между уровнями энергии, наблюдаемые в радиочастотной области спектра. Так возникают спектры ЯМР и ЭПР (см. Ядерный магнитный резонанс , Электронный парамагнитный резонанс).

Распределение по кинетич. энергиям электронов , испускаемых мол. системами в результате облучения рентгеновским или жестким УФ излучением, дает рентгеноэмктронная спектроскопия и фотоэлектронная спектроскопия . Дополнит. процессы в мол. системе, вызванные первоначальным возбуждением, приводят к появлению и др. спектров. Так, оже-спектры возникают в результате релаксац. захвата электрона с внеш. оболочки к.-л. атома на вакантную внутр. оболочку, а высвободившаяся энергия превращ. в кинетич. энергию др. электрона внеш. оболочки, испускаемого атомом . При этом осуществляется квантовый переход из нек-рого состояния нейтральной молекулы в состояние мол. иона (см. Оже-спектроскопия).

Традиционно к собственно молекулярным спектрам относят лишь спектры, связанные с оптич. переходами между электронно-колеба-тельно-вращат, уровнями энергии молекулы , связанными с тремя осн. типами энергетич. уровней молекулы - электронными Е эл, колебательными Е кол и вращательными Е вр, соответствующими трем типам внутр. движения в молекуле . За Е эл принимают энергию равновесной конфигурации молекулы в данном электронном состоянии. Набор возможных электронных состояний молекулы определяется св-вами ее электронной оболочки и симметрией . Колебат. движения ядер в молекуле относительно их равновесного положения в каждом электронном состоянии квантуются так, что при нескольких колебат. степенях свободы образуется сложная система колебат. уровней энергии Е кол. Вращение молекулы в целом как жесткой системы связанных ядер характеризуется вращат. моментом кол-ва движения, к-рый квантуется, образуя вращат. состояния (вращат. уровни энергии) Е вр. Обычно энергия электронных переходов порядка неск. эВ, колебательных-10 -2 ... 10 -1 эВ, вращательных-10 -5 ... 10 -3 эВ.

В зависимости от того, между какими уровнями энергии происходят переходы с испусканием, поглощением или комбинац. рассеянием электромагн. излучения - электронными, колебат. или вращательными, различают электронные, колебат. и вращательные молекулярные спектры. В статьях Электронные спектры , Колебательные спектры , Вращательные спектры приведены сведения о соответствующих состояниях молекул , правилах отбора для квантовых переходов , методах мол. спектроскопии , а также о том, какие характеристики молекул м. б. получены из молекулярных спектров: св-ва и симметрия электронных состояний, колебат. постоянные, энергия диссоциации , симметрия молекулы , вращат. постоянные, моменты инерции, геом. параметры, электрич. дипольные моменты , данные о строении и внутр. силовых полях и т. п. Электронные спектры поглощения и люминесценции в видимой и УФ областях дают информацию о распределении

МОЛЕКУЛЯРНЫЕ СПЕКТРЫ - спектры поглощения, испускания или рассеяния, возникающие при квантовых переходах молекул из одного энергетич. состояния в другое. M. с. определяются составом молекулы, её структурой, характером хим. связи и взаимодействием с внеш. полями (и, следовательно, с окружающими её атомами и молекулами). Наиб. характерными получаются M. с. разреженных молекулярных газов, когда отсутствует уширение спектральных линий давлением: такой спектр состоит из узких линий с доп-леровской шириной.

Рис. 1. Схема уровней энергии двухатомной молекулы: a и б -электронные уровни; u " и u "" - колебательные квантовые числа; J" и J "" - вращательные квантовые числа .

В соответствии с тремя системами уровней энергии в молекуле - электронной, колебательной и вращательной (рис. 1), M. с. состоят из совокупности электронных, колебат. и вращат. спектров и лежат в широком диапазоне эл--магн. волн - от радиочастот до рентг. области спектра. Частоты переходов между вращат. уровнями энергии обычно попадают в микроволновую область (в шкале волновых чисел 0,03-30 см -1), частоты переходов между колебат. уровнями -в ИК-обла-сть (400-10 000 см -1), а частоты переходов между электронными уровнями - в видимую и УФ-области спектра. Это разделение условное, т. к. часто вращат. переходы попадают и в ИК-область, колебат. переходы - в видимую область, а электронные переходы - в ИК-область. Обычно электронные переходы сопровождаются и изменением колебат. энергии молекулы, а при колебат. переходах изменяется и вращат. энергия. Поэтому чаще всего электронный спектр представляет собой системы электронно-колебат. полос, причём при высоком разрешении спектральной аппаратуры обнаруживается их вращат. структура. Интенсивность линий и полос в M. с. определяется вероятностью соответствующего квантового перехода. Наиб. интенсивные линии соответствуют переходу, разрешённому отбора правилами .К M. с. относят также оже-спектры и рентг. спектры молекул (в статье не рассматриваются; см. Оже-эффект, Оже-спектроскопия, Рентгеновские спектры, Рентгеновская спектроскопия) .

Электронные спектры . Чисто электронные M. с. возникают при изменении электронной энергии молекул, если при этом не меняются колебат. и вращат. энергии. Электронные M. с. наблюдаются как в поглощении (спектры поглощения), так и в испускании (спектры люминесценции). При электронных переходах обычно изменяется электрич. дипольный момент молекулы. Эле-ктрич. дипольный переход между электронными состояниями молекулы типа симметрии Г" и Г"" (см. Симметрия молекул )разрешён, если прямое произведение Г" Г"" содержит тип симметрии, по крайней мере одной из компонент вектора дипольного момента d . B спектрах поглощения обычно наблюдают переходы из основного (полносимметричного) электронного состояния в возбуждённые электронные состояния. Очевидно, что для осуществления такого перехода типы симметрии возбуждённого состояния и дипольного момента должны совпадать. T. к. электрич. дипольный момент не зависит от спина, то при электронном переходе спин должен сохраняться, т. е. разрешены только переходы между состояниями с одинаковой мультиплетностью (интер-комбинац. запрет). Это правило, однако, нарушается

для молекул с сильным спин-орбитальным взаимодействием, что приводит к интеркомбинационным квантовым переходам . В результате таких переходов возникают, напр., спектры фосфоресценции, к-рые соответствуют переходам из возбуждённого триплет-ного состояния в осн. синглетное состояние.

Молекулы в разл. электронных состояниях часто имеют разную геом. симметрию. В таких случаях условие Г" Г"" Г d должно выполняться для точечной группы низкосимметричной конфигурации. Однако при использовании перестановочно-инверсионной (ПИ) группы такая проблема не возникает, т. к. ПИ группа для всех состояний может быть выбрана одинаковой.

Для линейных молекул симметрии С ху тип симметрии дипольного момента Г d = S + (d z )-P(d x , d y) , поэтому для них разрешены только переходы S + - S + , S - - S - , П - П и т. д. с дипольным моментом перехода, направленным по оси молекулы, и переходы S + - П, П - D и т. д. с моментом перехода, направленным перпендикулярно оси молекулы (обозначения состояний см. в ст. Молекула ).

Вероятность В электрич. дипольного перехода с электронного уровня т на электронный уровень п , просуммированная по всем колебательно-вращат. уровням электронного уровня т , определяется ф-лой:

матричный элемент дипольного момента для перехода n - m , y еп и y em - волновые ф-ции электронов. Ин-тогральный коэф. поглощения, к-рый можно измерить экспериментально, определяется выражением

где N m - число молекул в нач. состоянии m , v nm - частота перехода т п . Часто электронные переходы характеризуются силой осциллятора

где е и т е - заряд и масса электрона. Для интенсивных переходов f nm ~ 1. Из (1) и (4) определяется ср. время жизни возбуждённого состояния:

Эти ф-лы справедливы также и для колебат. и вращат. переходов (в этом случае следует переопределить матричные элементы дипольного момента). Для разрешённых электронных переходов обычно коэф. поглощения на неск. порядков больше, чем для колебат. и вращат. переходов. Иногда коэф. поглощения достигает величины ~10 3 -10 4 см -1 атм -1 , т. е. электронные полосы наблюдаются при очень низких давлениях (~10 -3 - 10 -4 мм рт. ст.) и малых толщинах (~10-100 см) слоя вещества.

Колебательные спектры наблюдаются при изменении колебат. энергии (электронная и вращат. энергии при этом не должны меняться). Нормальные колебания молекул обычно представляют как набор невзаимодействующих гармонич. осцилляторов. Если ограничиться только линейными членами разложения дипольного момента d (в случае спектров поглощения) или поляризуемости a (в случае комбинац. рассеяния) по нормальным координатам Q k , то разрешёнными колебат. переходами считаются только переходы с изменением одного из квантовых чисел u k на единицу. Таким переходам соответствуют осн. колебат. полосы, они в колебат. спектрах наиб. интенсивны.

Осн. колебат. полосы линейной многоатомной молекулы, соответствующие переходам из осн. колебат. состояния, могут быть двух типов: параллельные (||) полосы, соответствующие переходам с дипольным моментом перехода, направленным по оси молекулы, и перпендикулярные (1) полосы, отвечающие переходам с дипольным моментом перехода, перпендикулярным оси молекулы. Параллельная полоса состоит только из R - и Р -ветвей, а в перпендикулярной полосе раз-

решена также и Q -ветвь (рис. 2). Спектр осн. полос поглощения молекулы типа симметричного волчка также состоит из || и | полос, но вращат. структура этих полос (см. ниже) более сложная; Q -ветвь в || полосе также не разрешена. Разрешённые колебат. полосы обозначают v k . Интенсивность полосы v k зависит от квадрата производной (дd/дQ к ) 2 или (д a/дQ k ) 2 . Если полоса соответствует переходу из возбуждённого состояния на более высокое, то её наз. горячей.

Рис. 2. ИК-полоса поглощения v 4 молекулы SF 6 , полученная на Фурье-спектрометре с разрешением 0,04 см -1 ; нише показана тонкая структура линии Р (39), измеренная на диодном лазерном спектрометре с разрешением 10 -4 см -1 .


При учёте энгармонизма колебаний и нелинейных членов в разложениях d и a по Q k становятся вероятными и переходы, запрещённые правилом отбора по u k . Переходы с изменением одного из чисел u k на 2, 3, 4 и т. д. наз. обертонными (Du k =2 - первый обертон, Du k =3 - второй обертон и т. д.). Если при переходе изменяются два или более из чисел u k , то такой переход наз. комбинационным или суммарным (если все u к увеличиваются) и разностным (если нек-рые из u k уменьшаются). Обертонные полосы обозначаются 2v k , 3v k , ..., суммарные полосы v k + v l , 2v k + v l и т. д., а разностные полосы v k - v l , 2v k - e l и т. д. Интенсивности полос 2u k , v k + v l и v k - v l зависят от первых и вторых производных d по Q k (или a по Q k ) и кубич. коэффициентов ангармонизма потенц. энергии; интенсивности более высоких переходов зависят от коэф. более высоких степеней разложения d (или a) и потенц. энергии по Q k .

Для молекул, не имеющих элементов симметрии, разрешены все колебат. переходы как при поглощении энергии возбуждения, так и при комбинац. рассеянии света. Для молекул, имеющих центр инверсии (напр., CO 2 , C 2 H 4 и др.), переходы, разрешённые в поглощении, запрещены для комбинац. рассеяния, и наоборот (альтернативный запрет). Переход между колебат. уровнями энергии типов симметрии Г 1 и Г 2 разрешён в поглощении, если прямое произведение Г 1 Г 2 содержит тип симметрии дипольного момента, и разрешён в комбинац. рассеянии, если произведение Г 1

Г 2 содержит тип симметрии тензора поляризуемости. Это правило отбора приближённое, т. к. оно не учитывает взаимодействия колебат. движения с электронным и вращат. движениями. Учёт этих взаимодействий приводит к возникновению полос, запрещённых согласно чисто колебат. правилам отбора.

Изучение колебат. M. с. позволяет установить гар-монич. частоты колебаний, константы ангармонизма. По колебат. спектрам проводится конформац. анализ

 


Читайте:



Самые великие открытия и изобретения человечества

Самые великие открытия и изобретения человечества

За последние несколько веков мы совершили бесчисленное множество открытий, которые помогли значительно улучшить качество нашей повседневной жизни и...

Фрегат "Аврора" назван в честь Демидовой соименницы Зари и Крейсер "Аврора" после её смерти От деревянных фрегатов к стальным крейсерам

Фрегат

Аврора Карловна Демидова-Карамзина (урожденная Шернваль фон Валлен)(1808-1902) явно запала в сердце государю. «Авроре Ш.»:Выдь, дохни нам...

Когда наполеон вернулся с эльбы год

Когда наполеон вернулся с эльбы год

...Прямо с Эльбы в Лион! Города забирая, Подошёл он, гуляя, к Парижским стенам... На бегство Наполеона с острова Эльба Джордж Гордон...

Монровия Монровия столица

Монровия Монровия столица

Монровия была основана в 1822 году чернокожими переселенцами из США. Американское колонизационное общество купило у местных вождей небольшой...

feed-image RSS