Главная - Коэльо Пауло
Водородная связь все примеры. Водородная связь. Природа и механизм образования водородной связи. Причины возникновения связи

Содержание статьи

ВОДОРОДНАЯ СВЯЗЬ (Н-связь)– особый тип взаимодействия между реакционно-способными группами, при этом одна из групп содержит атом водорода, склонный к такому взаимодействию. Водородная связь – глобальное явление, охватывающее всю химию. В отличие от обычных химических связей, Н-связь появляется не в результате целенаправленного синтеза, а возникает в подходящих условиях сама и проявляется в виде межмолекулярных или внутримолекулярных взаимодействий.

Особенности водородной связи.

Отличительная черта водородной связи – сравнительно низкая прочность, ее энергия в 5–10 раз ниже, чем энергия химической связи. По энергии она занимает промежуточное положение между химическими связями и Ван-дер-ваальсовыми взаимодействиями, теми, что удерживают молекулы в твердой или жидкой фазе.

В образовании Н-связи определяющую роль играет электроотрицательность участвующих в связи атомов – способность оттягивать на себя электроны химической связи от атома – партнера, участвующего в этой связи. В результате на атоме А с повышенной электроотрицательностью возникает частичный отрицательный заряд d- , а на атоме-партнере – положительный d+, химическая связь при этом поляризуется: А d- –Н d+ .

Возникший частичный положительный заряд на атоме водорода позволяет ему притягивать другую молекулу, также содержащую электроотрицательный элемент, таким образом, основную долю в образование Н-связи вносят электростатические взаимодействия.

В формировании Н-связи участвуют три атома, два электроотрицательных (А и Б) и находящийся между ними атом водорода Н, структура такой связи может быть представлена следующим образом: Б···Н d+ –А d- (водородную связь обычно обозначают точечной линией). Атом А, химически связанный с Н, называют донором протона (лат. donare – дарить, жертвовать), а Б – его акцептором (лат. acceptor – приемщик). Чаще всего истинного «донорства» нет, и Н остается химически связанным с А.

Атомов – доноров А, поставляющих Н для образования Н-связей, не много, практически всего три: N, O и F, в то же время набор атомов-акцепторов Б весьма широк.

Само понятие и термин «водородная связь» ввели В.Латимер и Р.Родебуш в 1920, для того, чтобы объяснить высокие температуры кипения воды, спиртов, жидкого HF и некоторых других соединений. Сопоставляя температуры кипения родственных соединений Н 2 O, Н 2 S, Н 2 Se, и Н 2 Te, они обратили внимание на то, что первый член этого ряда – вода – кипит намного выше, чем это следовало из той закономерности, которую образовали остальные члены ряда. Из этой закономерности следовало, что вода должна кипеть на 200° С ниже, чем наблюдаемое истинное значение.

Точно такое же отклонение наблюдается для аммиака в ряду родственных соединений: NН 3 , Н 3 P, Н 3 As, Н 3 Sb. Его истинная температура кипения (–33° С) на 80° С выше ожидаемого значения.

При кипении жидкости разрушаются только Ван-дер-Ваальсовы взаимодействия, те, что удерживают молекулы в жидкой фазе. Если температуры кипения неожиданно высокие, то, следовательно, молекулы связаны дополнительно еще какими-то силами. В данном случае это и есть водородные связи.

Точно также повышенная температура кипения спиртов (в сравнении с соединениями, не содержащими группу -ОН) – результат образования водородных связей.

В настоящее время надежный способ обнаружить Н-связи дают спектральные методы (чаще всего инфракрасная спектроскопия). Спектральные характеристики групп АН, связанных водородными связями, заметно отличаются от тех случаев, когда такая связь отсутствует. Кроме того, если структурные исследования показывают, что расстояние между атомами Б – Н меньше суммы Ван-дер-Ваальсовых радиусов, то считают, что присутствие Н-связи установлено.

Помимо повышенной температуры кипения водородные связи проявляются себя также при формировании кристаллической структуры вещества, повышая его температуру плавления. В кристаллической структуре льда Н-связи образуют объемную сетку, при этом молекулы воды располагаются таким образом, чтобы атомы водорода одной молекулы были направлены к атомам кислорода соседних молекул:

Борная кислота В(ОН) 3 имеет слоистую кристаллическую структуру, каждая молекула связана водородными связями с тремя другими молекулами. Упаковка молекул в слое образует паркетный узор, собранный из шестиугольников:

Большинство органических веществ не растворимо в воде, когда такое правило нарушается, то, чаще всего, это результат вмешательства водородных связей.

Кислород и азот – основные доноры протонов, они берут на себя функцию атома А в рассмотренной ранее триаде Б···Н d+ –А d- . Они же, чаще всего, выступают в роли акцепторов (атом Б). Благодаря этому некоторые органические вещества, содержащие O и N в роли атома Б, могут растворяться в воде (роль атома А исполняет кислород воды). Водородные связи между органическим веществом и водой помогают «растащить» молекулы органического вещества, переводя его в водный раствор.

Существует эмпирическое правило: если органическое вещество содержит не более трех атомов углерода на один атом кислорода, то оно легко растворяется в воде:

Бензол весьма незначительно растворим в воде, но если заменить одну группу СН на N, то получим пиридин С 5 Н 5 N, который смешивается с водой в любых соотношениях.

Водородные связи могут проявить себя и в неводных растворах, когда на водороде возникает частичный положительный заряд, а рядом находится молекула, содержащая «хороший» акцептор, как правило кислород. Например, хлороформ HCCl 3 растворяет жирные кислоты, а ацетилен HCєCH растворим в ацетоне:

Этот факт нашел важное техническое применение, ацетилен, находящийся под давлением, очень чувствителен к легким сотрясениям и легко взрывается, а его раствор в ацетоне под давлением безопасен в обращении.

Важную роль играют водородные связи в полимерах и биополимерах. В целлюлозе – основном компоненте древесины – гидроксильные группы, расположены в виде боковых групп полимерной цепи, собранной из циклических фрагментов. Несмотря на сравнительно слабую энергию каждой отдельной Н-связи, их взаимодействие на всем протяжении полимерной молекулы приводит к столь мощному межмолекулярному взаимодействию, что растворение целлюлозы становится возможным лишь при использовании экзотического высокополярного растворителя – реактива Швейцера (аммиачный комплекс гидроксида меди).

В полиамидах (капрон, нейлон) Н-связи возникают между карбонильными и аминогруппами >С=О···Н–N

Это приводит к образованию кристаллических областей в структуре полимера и увеличению его механической прочности.

То же самое происходит в полиуретанах, имеющих строение, близкое к полиамидам:

NH-C(O)O-(CH 2) 4 -OC(O)-NH-(CH 2) n -NH-C(O)O-

Образование кристаллических областей и последующее упрочнение полимера происходит благодаря образованию Н-связей между карбонильными и аминогруппами >С=О···Н–N<.>

Аналогичным образом происходит объединение параллельно уложенных полимерных цепочек в белках, однако Н-связи предоставляют белковым молекулам также иной способ упаковки – в виде спирали, при этом витки спирали закреплены все теми же водородными связями, возникающими между карбонильной и аминогруппой:

В молекуле ДНК записана вся информация о конкретном живом организме в виде чередующихся циклических фрагментов, содержащих карбонильные и аминогруппы. Таких фрагментов четыре типа: аденин, тимин, цитозин и гуанин. Они расположены в виде боковых подвесков вдоль всей полимерной молекулы ДНК. Порядок чередования этих фрагментов определяет индивидуальность каждого живого существа., При парном взаимодействие карбонильных С=О и аминогрупп NH, а также аминогрупп NH и атомов азота, не содержащих водород, возникают Н-связи, именно они удерживает две молекулы ДНК в форме широко известной двойной спирали:

К образованию Н-связи (в роли акцепторов протонов) склонны комплексы некоторых переходных металлов; наиболее расположены к участию в Н-связи комплексы металлов VI–VIII групп. Для того, чтобы такая связь возникла в ряде случае необходимо участие мощного донора протона, например, трифторуксусной кислоты. На первой стадии (см. рисунок ниже) возникает Н-связь с участием атома металла иридия (комплекс I), играющего роль акцептора Б.

Далее при понижении температуры (от комнатной до –50° С) протон переходит к металлу и появляется обычная связь М–Н. Все превращения обратимы, в зависимости от температуры протон может передвигаться либо к металлу, либо к своему донору – аниону кислоты.

На второй стадии металл (комплекс II) принимает протон, а вместе с ним положительный заряд и становится катионом. Образуется обычное ионное соединение (как NaCl). Однако, перейдя к металлу, протон сохраняет свою постоянную тягу к различным акцепторам, в данном случае к аниону кислоты. В результате появляется Н-связь (отмечена звездочками), дополнительно стягивающая ионную пару:

Атом водорода может участвовать в роли атома Б, то есть, акцептора протона в том случае, когда на нем сосредоточен отрицательный заряд, это реализуется в гидридах металлов: М d+ –Н d- , соединениях, содержащих связь металл – водород. Если гидрид металла взаимодействует с донором протона средней силы (например, фторированным трет -бутанолом), то возникает необычный диводородный мостик, где водород сам с собой организует Н-связь: М d+ –Н d- ···Н d+ –А d- :

В показанном комплексе клиновидными линиями со сплошной заливкой или поперечной штриховкой обозначены химические связи, направленные к вершинам октаэдра.

Михаил Левицкий

Водородная связь - связь между положительно заряженным атомом водорода одной молекулы и отрицательно заряженным атомом другой молекулы.

Механизм возникновения водородной связи - частично электростатический и частично донорно-акцепторный.

Характерной чертой водородной связи является расстояние между атомом водорода и другим атомом, её образующим. Оно должно быть меньше, чем сумма радиусов этих атомов.

Водородная связь подразделяется:

1. Межмолекулярная водородная связь образуется между молекулами веществ, в состав которых входят водород и сильно электроотрицательный элемент - фтор , кислород , азот, хлор , сера . Сильно смещенная общая электронная пара от водорода к атому отрицательно заряженного элемента, при этом положительный заряд водорода сконцентрирован в малом объеме, приводит взаимодействие протона с неподеленной электронной парой другого атома или иона, обобществляя её.

Водородную связь обозначают точками, указывая, что она намного слабее ковалентной связи (примерно в 15-20 раз).

2. Внутримолекулярная водородная связь присутствует в многоатомных спиртах, углеводах, белках и других органических веществах.

Вещества с водородной связь имеют молекулярные кристаллические решетки, в узлах которой находятся молекулы.

Примеры: вода в виде льда, йод , хлор, бром , «сухой лёд» (твердый диоксид углерода), твёрдый аммиак, а также твёрдые органические вещества (метан, бензол, фенол, нафталин, белки и т.д.).

Физические свойства веществ с водородной связью.

Водородная связь обеспечивает низкомолекулярным веществам способность быть при обычных условиях в жидком агрегатном состоянии (этанол, метанол, вода) или сжижающимися газами (аммиак, фтороводород).

Более высокая температура кипения воды (100 о С) по сравнению с водородными соединениями элементов подгруппы кислорода (Н 2 S , Н 2 Sе , Н 2 Те ), так как затрачивается дополнительная энергия на разрушение водородных связей.

Также при плавлении воды её плотность возрастает. Это объясняется тем, что в структуре льда каждый атом кислорода связан через атомы водорода с четырьмя другими атомами кислорода других молекул воды. В результате образуется рыхлая «ажурная» структура.

В молекулах соединениях HF, H 2 O, NH 3 существуют связи водорода с сильно электроотрицательным элементом (Н–F, Н–O, Н–N). Между молекулами таких соединений могут образовываться межмолекулярные водородные связи . В некоторых органических молекулах, содержащих связи Н–O, Н–N, могут возникать внутримолекулярные водородные связи .

Механизм образования водородной связи имеет частично электростатический, частично донорно – акцепторный характер. При этом донором электронной пары выступают атом сильно электроотрицательного элемента (F, O, N), а акцептором - атомы водорода, соединенные с этими атомами. Как и для ковалентной связи, для водородной связи характерны направленность в пространстве и насыщаемость .

Водородную связь принято обозначать точками: Н ··· F. Водородная связь проявляется тем сильнее, чем больше электроотрицательность атома-партнера и чем меньше его размеры. Она характерна прежде всего для соединений фтора, а также кислорода, в меньшей степени азота, в еще меньшей степени для хлора и серы. Соответственно меняется и энергия водородной связи (табл. 1).

Таблица 1. Средние значения энергий водородных связей

Межмолекулярная и внутримолекулярная водородная связь

Благодаря водородным связям молекулы объединяются в димеры и более сложные ассоциаты. Молекулы воды образуют ассоциаты (Н 2 О) 2 , (Н 2 О) 3 , (Н 2 О) 4 ; спирта (C 2 H 5 ОН) 4 . Этим и объясняется увеличение температуры кипения спиртов по сравнению с углеводородами, Наблюдается хорошее растворение метанола и этанола в воде. Водородная связь, возникшая между молекулами, называется межмолекулярной.

Например, образование димера парагидроксибензальдегида можно представить следующей схемой (рис. 1).

Рис. 1. Образование межмолекулярных водородных связей в парагидроксибензальдегиде.

Водородные связи могут возникать как между различными молекулами (межмолекулярная водородная связь), так и внутри молекулы (внутримолекулярная водородная связь). Внутримолекулярные водородные связ и имеются в многоатомных спиртах, углеводах, белках и других органических веществах.

Влияние водородной связи на свойства веществ

Наиболее удобным индикатором существования межмолекулярной водородной связи является температура кипения вещества. Более высокая температура кипения воды (100 o C по сравнению с водородными соединениями элементов подгруппы кислорода (H 2 S, H 2 Se, H 2 Te) объясняется наличием водородных связей: на разрушение межмолекулярных водородных связей в воде необходимо затратить дополнительную энергию.

Водородная связь существенным образом может влиять на структуру и свойства веществ. Существование межмолекулярной водородной связи повышает температуры плавления и кипения веществ. Наличие внутримолекулярной водородной связи приводит к тому, что молекула дезоксирибонуклеиновой кислоты (ДНК) оказывается свернутой в воде двойной спирали.

Водородная связь также играет важную роль в процессах растворения, поскольку растворимость зависит и от способности соединения давать водородные связи с растворителем. В результате содержащие ОН-группы такие вещества, как сахар, глюкоза, спирты, карбоновые кислоты, как правило, хорошо растворимы в воде.

Примеры соединений: одноатомные (метанол, этанол) и многоатомные спирты (глицерин, этиленгликоль), карбоновые кислоты, амины, аминокислоты, белки, вода, аммиак, фтороводород, кислородсодержащие карбоновые кислоты.

Структуру водородной связи мы с вами разберём на примере взаимодействия молекул воды между собой.

Молекула воды является диполем . Это объясняется тем, что атом водорода , связанный с более электроотрицательным элементом кислородом , имеющим , испытывает недостаток электронов и поэтому способен взаимодействовать с атомом кислорода другой молекулы воды.

В результате этого взаимодействия возникает водородная связь (Рис. 2.1 ):

2.1. Механизм образования водородной связи между молекулами воды

Это объясняется тем, что атом водорода , связанный с более электроотрицательным элементом, имеющим неподелённую электронную пару (азотом, кислородом, фтором и др.), испытывает недостаток электронов и поэтому способен взаимодействовать с неподелённой парой электронов другого электроотрицательного атома этой же или другой молекулы.

В результате также возникает водородная связь , которая графически обозначается тремя точками (Рис.):

Рис. 2.2. Механизм образования водородной связи между протоном (Н . δ + ) и более электроотрицательными атомами серы(: S δ - ), кислорода (: O δ - ) и азота (: N δ - )

Эта связь значительно слабее других химических связей (энергия ее образования 10-40 кДж/моль ), и, в основном, определяется электростатическим и донорно-акцепторным взаимодействиями.

Водородная связь может быть как внутримолекулярной , так и межмолекулярной .

2.1.4. Гидрофобные взаимодействия

Прежде, чем рассматривать природу гидрофобного взаимодействия , необходимо ввести понятие «гидрофильных» и «гидрофобных» функциональных групп .

Группы, которые могут образовывать водородные связи с молекулами воды, называются гидрофильными .

К этим группам относятся полярные группы: аминогруппа (- NH 2 ) , карбоксильная (- COOH ), карбонильная группы (- CHO ) и сульфгидрильная группа (- SH ).

Как правило, гидрофильные соединения хорошо растворимы в воде. !!! Это обусловлено тем, что полярные группы способны образовывать водородные связи с молекулами воды .

Появление таких связей сопровождается выделением энергии , поэтому и возникает тенденция к максимальному увеличению поверхности контакта заряженных групп и воды (Рис. 2.3 ):

Рис. 2.3. Механизм образования гидрофобных и гидрофильных взаимодействий

Молекулы или части молекул, неспособные образовывать водородные связи с водой называются гидрофобными группами .

К этим группам относятся алкильные и ароматические радикалы, которые неполярны и не несут электрического заряда.

Гидрофобные группы плохо или вовсе не растворимы в воде.

Это объясняется тем, что атомы и группы атомов , входящие в состав гидрофобных групп, являются электронейтральными и (поэтому) не могут образовывать водородных связей с водой.

!!! Гидрофобные взаимодействия возникают в результате контакта между неполярными радикалами, неспособными разорвать водородные связи между молекулами воды.

В результате этого молекулы воды вытесняются на поверхность гидрофильных молекул (Рис. 2.3 ).

2.1.5. Ван-дер-ваальсовы взаимодействия.

В молекулах существуют также весьма слабые и короткодействующие силы притяжения между электрически нейтральными атомами и функциональными группами.

Это так называемые ван-дер-ваальсовые взаимодействия .

Они обусловлены электростатическим взаимодействием между отрицательно заряженными электронами одного атома и положительно заряженным ядром другого атома.

Так как ядра атомов экранированы окружающими их собственными электронами от ядер соседних атомов, то возникающие между различными атомами ван-дер-ваальсовы взаимодействия весьма невелики .

Все эти типы взаимодействий принимают участие в формировании , поддержании и стабилизации пространственной структуры (конформации ) белковых молекул (Рис. 2.4 ):

Рис. 2.4. Механизм образования ковалентных связей и слабых нековалентных взаимодействий: 1 - электро-статические взаимодействия; 2 – водородные связи; 3 – гидрофобные взаимодействия, 4 – дисульфидные связи

Силы, которые способствуют формированию пространственной структуры белков и удерживающие её в стабильном состоянии , являются очень слабыми силами . Энергия этих сил на 2-3 порядка меньше энергии ковалентных связей. Они действуют между отдельными атомами и группами атомов.

Однако, огромное число атомов в молекулах биополимеров (белков), приводит к тому, что суммарная энергия этих слабых взаимодействий становится сравнима с энергией ковалентных связей.

Водород — простейший химический элемент во Вселенной. Его атом состоит всего из одного протона в ядре и одного электрона. Несмотря на свою физическую и химическую простоту, водород является основным элементом мироздания, благодаря ему горят и светятся звезды, наша планета покрыта водой, а сложнейшие органические соединения дали начало самому удивительному явлению во Вселенной — .

Вконтакте

Особенности вещества

В природе встретить водород в составе других элементов таблицы Менделеева можно повсюду. Самым ярким примером такого соединения является такое вещество, как .

Водород имеет три изотопа:

  • протий Н (тот самый первый элемент таблицы Менделеева, привычный нам всем водород);
  • дейтерий (так называемый тяжелый водород, содержащий в ядре не только протон, но и нейтрон);
  • тритий — радиоактивный изотоп водорода, ядро которого состоит из протона и двух нейтронов.

Водородная связь характерна и присутствует в большинстве органических соединений. Соединяясь с хлором, водород образует хлорную кислоту, с кислородом — воду, с азотом — аммиак. Данные явления, обнаруженные в конце 19 века, были открыты русскими химиками М. Ильинским и Н. Бекетовым.

Ученые установили, что содержащая водород группа атомов чаще всего образует стабильные объединения с заряженным отрицательно атомом, который может входить в состав той или ной молекулы (не исключено, что даже в ту же самую). Данная дополнительная «сцепка» называется водородной связью.

Природа явления

Дадим определение водородной связи (в.с.). Это взаимодействие между отрицательно заряженными частицами молекул, реализованным атомом водорода.

Если чертой обозначить связь ковалентного типа, а тремя точками — водородную, то символически можно отобразить в.с. между молекулами А и В таким образом: .

Природу данного межатомного явления понять довольно просто. Атом Н несет положительные заряды δ+, если он встречает на своем пути заряженный отрицательно и обладающий зарядом δ−, то вступает с ним в электростатический контакт.

Важно! Чаще всего в.с. заметно слабее по сравнению с ковалентными. Однако они намного крепче, чем стандартное молекулярное притяжение частиц, свойственное твердым и жидким телам.

Ковалентность

Несмотря на то, что в.с. может протекать в рамках двух частиц пары совершенно разных молекул, водородная химическая не является молекулярной связью. Свойство направления и насыщения — одно из качеств в.с., которое делает ее очень похожей на ковалентную. Отметим, что во многих теориях, в.с. считается видом и это совершенно никак не влияет на результаты, поэтому можно считать данное мнение корректным. Более того, сама природа в.с. очень близка к ковалентной.

Это можно легко продемонстрировать при помощи традиционных химических методов, рассчитывающих орбитали внутри молекул. В этом исчислении она будет представлять собой трехцентровые двухэлектронные связи. В очередной раз это доказывает, что отнесение ВС к разновидности ковалентной не несет ничего антинаучного.

Процесс образования

Каков способ образования. Образуются водородные связи между электроотрицательными атомами, один из которых имеет свободную электронную пару.

Самым убедительным признаком в.с. является дистанция между атомом Н и вторым атомом. Все дело в том, что дистанция между атомами меньше, чем сумма двух атомарных радиусов. Не смотря на часто встречающуюся асимметрию (когда в , дистанция превышает расстояние ) все равно сумма радиусов атомов больше, чем расстояние между ними.

Да, асимметрия в в.с. встречается часто, однако существуют и симметричные конструкции, например HF. Угол между первым и вторым атомом в системе приближен к 180 градусам. Вспоминая фтороводороды HF, следует заметить, что соединение с фтором — одно из самых крепких. HF представляет собой ион симметричного типа . В нем энергия водородных соединений составляет порядка 150 килоджоулей в одном моле. Ковалентная связь фтороводорода приблизительно такая же. В воде Н 2 О в.с. значительно меньше — около 20 килоджоулей на моль.

Соединение частиц через водород найдено в большом количестве различных соединений. Химическая связь часто возникает между фтором, азотом и , так как последние являются самыми электроотрицательными элементами. Редко обнаруживается между хлором, серой и прочими элементами, не являющимися металлами.

Важно! Азот и кислород — основа жизни, эти элементы содержатся в особо высокой концентрации в углеводах, белках и нуклеиновой кислоте. Если бы между этими веществами не было прочного контакта через атом Н, жизнь на Земле была бы невозможна.

Межмолекулярная водородная связь — разновидность образования крепкой структуры, связывающей через атом Н одну молекулу с другой. Ярким примером является муравьиная кислота. Она представляет собой молекулу, состоящую из двух или более простых молекул (димер).

Внутримолекулярная ВС — разновидность, при которой атом Н является связующим звеном в рамках одной молекулы.

То же самое относится к фтороводороду, который находится в газообразном состоянии. Он содержит такие полимерные структуры, которые могут состоять из четырех простых молекул НF, объединенных друг с другом через водород.

Примеры водородной межмолекулярной конструкции искать не приходится: растворимость глюкозы, фруктозы, сахарозы в водном растворе объясняются именно при помощи водорода и его соединительным свойствам. Молекулярные структуры живых организмов (молекула , например) содержат миллионы сложных конструкций, связанных водородом.

Функция соединений

Насколько важна социальная роль данных связей. Рассмотрим несколько веществ, которые существуют благодаря водородному соединению. Мы будем сравнивать эти молекулы с водой. Чтобы наши размышления были честными, мы будем выбирать для сравнения исключительно неметаллы. Эти вещества называются халькогеноводородами.

Например, теллур. Водородное соединение H 2 Te кипит при температуре -2 градуса. Что касается, селена, то H 2 Se кипит при температуре -42 градуса, а серный халькогеноводород H 2 S кипит при -60 градусах. Поразительно то, что вода кипит при +100 градусах.

Внимание! Если бы не было в.с., а кислород не обладал настолько «цепкими» качествами, при существующем климате на Земле не существовало бы воды в жидком состоянии. Такая высокая температура кипения — непосредственное следствие водородной связи.

«Сцепление» атомов кислорода с водородом показано на следующем изображении.

Но на этом удивительные свойства воды не заканчиваются. Следует также помнить о ее плавлении. И снова водородная связь — именно из-за нее при плавлении плотность начинает расти. При таянии льда, каждое десятое водородное соединение разрушается, из-за чего молекулы воды приближаются друг к другу.

Типы и свойства водородной связи.

Водородная связь. Самоподготовка к ЕГЭ и ЦТ по химии

Вывод

Образования водородной связи влияют на кислотность веществ. К примеру, плавиковая кислота НF является достаточно слабой. При этом другие галогеноводородные кислоты довольно сильны. Причина этого в том, что Н соединен сразу с двумя атомами F, а это не дает им возможности отцепиться. Именно благодаря этому, НF- единственная кислота, образующая кислую соль NaHF 2 .

 


Читайте:



Сочинение My working day на английском с переводом

Сочинение My working day на английском с переводом

«Распорядок дня на английском языке» – одна из самых востребованных тем. Пожалуй, одна из первых, изучаемых в школе и повторяемых в ВУЗе. Будни или...

Star wars: история далекой-далекой галактики - легенды и сказания

Star wars: история далекой-далекой галактики - легенды и сказания

Кратко о статье: Расширенная вселенная давно развивается независимо от своих непосредственных создателей. Дабы не путаться в хронологии событий,...

ю Высшие и центральные государственные учреждения

ю Высшие и центральные государственные учреждения

В эпоху Петра I в России продолжились и усилились серьезные изменения в политической, экономической и культурной жизни России, начавшиеся еще в...

Духовно-рыцарские ордена – кратко

Духовно-рыцарские ордена – кратко

Орден госпитальеров — самый знаменитый и прославленный из духовно-рыцарских орденов. Полное его наименование — Суверенный Военный Орден...

feed-image RSS