Главная - Кастанеда Карлос
Электромагнитное поле - история открытия и физические свойства. История магнита Кто впервые с помощью магнитного поля получил

Магнитные поля возникают в природе и могут создаваться искусственно. Человек заметил их полезные характеристики, которые научился применять в повседневной жизни. Что же является источником магнитного поля?

Как развивалось учение о магнитном поле

Магнитные свойства некоторых веществ были замечены еще в древности, но по-настоящему их изучение началось в средневековой Европе. Используя мелкие стальные иголки, ученый из Франции Перегрин обнаружил пересечение силовых магнитных линий в определенных пунктах – полюсах. Только через три века, руководствуясь этим открытием, Гилберт продолжил его изучение и впоследствии защищал свою гипотезу, что Земля обладает собственным магнитным полем.

Бурное развитие теории магнетизма началось с начала 19-го века, когда Ампер обнаружил и описал влияние электрического поля на возникновение магнитного, а открытие Фарадеем электромагнитной индукции установило и обратную взаимосвязь.

Что такое магнитное поле

Магнитное поле проявляется в силовом воздействии на электрозаряды, находящиеся в движении, или на тела, у которых имеется магнитный момент.

  1. Проводники, по которым проходит электрический ток;
  2. Постоянные магниты;
  3. Изменяющееся электрическое поле.

Первопричина возникновения магнитного поля идентична для всех источников: электрические микрозаряды – электроны, ионы или протоны обладают собственным магнитным моментом либо находятся в направленном движении.

Важно! Взаимно порождают друг друга электрические и магнитные поля, меняющиеся с течением времени. Эта взаимосвязь определяется уравнениями Максвелла.

Характеристики магнитного поля

Характеристиками магнитного поля являются:

  1. Магнитный поток, скалярная величина, определяющая, сколько силовых линий магнитного поля проходит через заданное сечение. Обозначается буквой F. Рассчитывается по формуле:

F = B x S x cos α,

где В – вектор магнитной индукции, S – сечение, α – угол наклона вектора к перпендикуляру, проведенному к плоскости сечения. Единица измерения – вебер (Вб);

  1. Вектор магнитной индукции (В) показывает силу, действующую на зарядоносители. Он направлен в сторону северного полюса, куда указывает обычная магнитная стрелка. Количественно магнитную индукцию измеряют в теслах (Тл);
  2. Напряженность МП (Н). Определяется магнитной проницаемостью различных сред. В вакууме проницаемость принимается за единицу. Направление вектора напряженности совпадает с направлением магнитной индукции. Единица измерения – А/м.

Как представить магнитное поле

Легко видеть проявления магнитного поля на примере постоянного магнита. Он имеет два полюса, и в зависимости от ориентации два магнита притягиваются или отталкиваются. Магнитное поле характеризует процессы, происходящие при этом:

  1. МП математически описывается, как векторное поле. Оно может быть построено посредством многих векторов магнитной индукции В, каждый из которых направлен в сторону северного полюса стрелки компаса и имеет длину, зависящую от магнитной силы;
  2. Альтернативный способ представления заключается в использовании силовых линий. Эти линии никогда не пересекаются, нигде не начинаются и не останавливаются, образуя замкнутые петли. Линии МП объединяются в области с более частым расположением, где магнитное поле является самым сильным.

Важно! Плотность силовых линий указывает на прочность магнитного поля.

Хотя в действительности МП видеть нельзя, силовые линии легко визуализировать в реальном мире, расположив железные опилки в МП. Каждая частица ведет себя как крошечный магнит с северным и южным полюсом. Результатом является шаблон, похожий на силовые линии. Ощутить воздействие МП человек не способен.

Измерение магнитного поля

Так как это величина векторная, для измерения МП существует два параметра: сила и направление. Направление легко измерить с помощью компаса, соединенного с полем. Пример – компас, помещенный в магнитное поле Земли.

Измерение других характеристик значительно сложнее. Практические магнитометры появились только в 19-м веке. Большинство из них работают, используя силу, которую электрон чувствует при движении по МП.

Очень точное измерение малых магнитных полей стало практически осуществимо с момента открытия в 1988 году гигантского магнитосопротивления в слоистых материалах. Это открытие в фундаментальной физике было быстро применено к магнитной технологии жесткого диска для хранения данных на компьютерах, приведшее к тысячекратному увеличению емкости хранилища всего за несколько лет.

В общепринятых системах измерений МП измеряется в тестах (Тл) или в гауссах (Гс). 1 Тл = 10000 Гс. Гаусс часто используется, потому что Тесла – слишком большое поле.

Интересно. Маленький магнит на холодильнике создает МП, равное 0,001 Тл, а магнитное поле Земли в среднем – 0,00005 Тл.

Природа возникновения магнитного поля

Магнетизм и магнитные поля являются проявлениями электромагнитной силы. Есть два возможных способа, как организовать энергозаряд в движении и, следовательно, магнитное поле.

Первый – это подсоединить провод к источнику тока, вокруг него образуется МП.

Важно! По мере увеличения тока (количества зарядов в движении) пропорционально увеличивается МП. При удалении от провода поле снижается в зависимости от расстояния. Это описывается законом Ампера.

Некоторые материалы, имеющие более высокую магнитопроницаемость, способны концентрировать магнитные поля.

Поскольку магнитное поле – это вектор, необходимо определить его направление. Для обычного тока, протекающего через прямой провод, направление можно найти по правилу правой руки.

Чтобы использовать правило, надо представить, что провод обхвачен правой рукой, а большой палец указывает направление тока. Тогда четыре остальных пальца покажут направление вектора магнитной индукции вокруг проводника.

Второй способ создания МП – использование факта, что в некоторых веществах появляются электроны, обладающие собственным магнитным моментом. Так работают постоянные магниты:

  1. Хотя атомы часто имеют много электронов, они в основном соединяются так, что полное магнитное поле пары компенсируется. Говорят, что два электрона, спаренные таким образом, имеют противоположный спин. Поэтому, чтобы что-то намагнитить, нужны атомы, которые имеют один или несколько электронов с одинаковым спином. Например, железо имеет четыре таких электрона и подходит для изготовления магнитов;
  2. Миллиарды электронов, находящиеся в атомах, могут быть случайно ориентированы, и общего МП не будет, независимо от того, сколько неспаренных электронов имеет материал. Он должен быть стабильным при невысокой температуре, чтобы обеспечить общую предпочтительную ориентацию электронов. Высокая магнитопроницаемость обуславливает намагничивание таких веществ при определенных условиях вне влияния МП. Это ферромагнетики;
  3. Другие материалы могут проявлять магнитные свойства при наличии внешнего МП. Внешнее поле служит для выравнивания всех электронных спинов, которое исчезает после удаления МП. Это вещества – парамагнетики. Металл двери холодильника является примером парамагнетика.

Землю можно представить в виде конденсаторных обкладок, заряд которых имеет противоположный знак: «минус» – у земной поверхности и «плюс» – в ионосфере. Между ними находится атмосферный воздух в качестве изоляционной прокладки. Гигантский конденсатор сохраняет постоянный заряд, благодаря влиянию земного МП. Пользуясь этими знаниями, можно создать схему получения электро энергии из магнитного поля Земли. Правда, в результате будут невысокие значения напряжения.

Нужно взять:

  • заземляющее устройство;
  • провод;
  • трансформатор Теслы, способный генерировать высокочастотные колебания и создавать коронный разряд, ионизируя воздух.

Катушка Теслы будет выступать в роли эмиттера электронов. Вся конструкция соединяется вместе, причем для обеспечения достаточной разности потенциалов трансформатор должен быть поднят на значительную высоту. Таким образом, будет создана электрическая цепь, по которой будет протекать маленький ток. Получить большое количество электроэнергии, пользуясь этим устройством, невозможно.

Электричество и магнетизм доминируют во многих мирах, окружающих человека: от самых фундаментальных процессов в природе до ультрасовременных электронных устройств.

Видео

Добавить сайт в закладки

История электричества

Электричество, совокупность явлений, обусловленных существованием, движением и взаимодействием электрически заряженных тел или частиц. Взаимодействие электрических зарядов осуществляется с помощью электромагнитного поля (в случае неподвижных электрических зарядов - электростатического поля).

Движущиеся заряды (электрический ток) наряду с электрическим возбуждают и магнитное поле, т. е. порождают электромагнитное поле, посредством которого осуществляется электромагнитное взаимодействие (учение о магнетизме является составной частью общего учения об электричестве). Электромагнитные явления описываются классической электродинамикой, в основе которой лежат Максвелла уравнения

Законы классической теории электричества охватывают огромную совокупность электромагнитных процессов. Среди 4 типов взаимодействий (электромагнитных, гравитационных, сильных и слабых), существующих в природе, электромагнитные занимают первое место по широте и разнообразию проявлений. Это связано с тем, что все тела построены из электрически заряженных частиц противоположных знаков, взаимодействия между которыми, с одной стороны, на много порядков интенсивнее гравитационных и слабых, а с другой - являются дальнодействующими в отличие от сильных взаимодействий. Строение атомных оболочек, сцепление атомов в молекулы (химические силы) и образование конденсированного вещества определяются электромагнитным взаимодействием.

Простейшие электрические и магнитные явления известны ещё с глубокой древности. Были найдены минералы, притягивающие кусочки железа, а также обнаружено, что янтарь (греч. электрон, elektron, отсюда термин электричество), потёртый о шерсть, притягивает лёгкие предметы (электризация трением). Однако лишь в 1600 У. Гильберт впервые установил различие между электрическими и магнитными явлениями. Он открыл существование магнитных полюсов и неотделимость их друг от друга, а также установил, что земной шар - гигантский магнит.

В XVII - 1-й половине XVIII вв. проводились многочисленные опыты с наэлектризованными телами, были построены первые электростатические машины, основанные на электризации трением, установлено существование электрических зарядов двух родов (Ш. Дюфе), обнаружена электропроводность металлов (английский учёный С. Грей). С изобретением первого конденсатора - лейденской банки (1745) - появилась возможность накапливать большие электрические заряды. В 1747-53 Франклин изложил первую последовательную теорию электрических явлений, окончательно установил электрическую природу молнии и изобрёл молниеотвод.

Во 2-й половине XVIII в. началось количественное изучение электрических и магнитных явлений. Появились первые измерительные приборы - электроскопы различных конструкций, электрометры. Г. Кавендиш (1773) и Ш.Кулон (1785) экспериментально установили закон взаимодействия неподвижных точечных электрических зарядов (работы Кавендиша были опубликованы лишь в 1879).

Этот основной закон электростатики (Кулона закон) впервые позволил создать метод измерения электрических зарядов по силам взаимодействия между ними. Кулон установил также закон взаимодействия между полюсами длинных магнитов и ввёл понятие о магнитных зарядах, сосредоточенных на концах магнитов.

Следующий этап в развитии науки об электричестве связан с открытием в конце XVIII в. Л.Гальвани "животного электричества" и работами А.Вольты , который изобрёл первый источник электрического тока - гальванический элемент (т. н. вольтов столб, 1800), создающий непрерывный (постоянный) ток в течение длительного времени. В 1802 В.В.Петров, построив гальванический элемент значительно большей мощности, открыл электрическую дугу, исследовал её свойства и указал на возможность применений её для освещения, а также для плавления и сварки металлов. Г. Дэви электролизом водных растворов щелочей получил (1807) неизвестные ранее металлы - натрий и калий. Дж,П.Джоуль установил (1841), что количество теплоты, выделяемой в проводнике электрическим током, пропорционально квадрату силы тока; этот закон был обоснован (1842) точными экспериментами Э.Х.Ленца (закон Джоуля - Ленца).

Г.Ом установил (1826) количественную зависимость электрического тока от напряжения в цепи. К.Ф.Гаусс сформулировал (1830) основную теорему электростатики.

Наиболее фундаментальное открытие было сделано Х.Эрстедом в 1820; он обнаружил действие электрического тока на магнитную стрелку - явление, свидетельствовавшее о связи между электричеством и магнетизмом. Вслед за этим в том же году А.М.Ампер установил закон взаимодействия электрических токов (Ампера закон). Он показал также, что свойства постоянных магнитов могут быть объяснены на основе предположения о том, что в молекулах намагниченных тел циркулируют постоянные электрические токи (молекулярные токи). Т. о., согласно Амперу, все магнитные явления сводятся к взаимодействиям токов, магнитных же зарядов не существует. Со времени открытий Эрстеда и Ампера учение о магнетизме сделалось составной частью учения об электричестве.

Со 2-й четверти XIX в. началось быстрое проникновение электричества в технику. В 20-х гг. появились первые электромагниты. Одним из первых применений электричества был телеграфный аппарат, в 30-40-х гг. построены электродвигатели и генераторы тока, а в 40-х гг.- электрические осветительные устройства и т. д. Практическое применение электричества в дальнейшем всё более возрастало, что в свою очередь оказало существенное, влияние на учение об электричестве.

В 30-40-х гг. XIX в. в развитие науки об электричестве внёс большой вклад М.Фарадей - творец общего учения об электромагнитных явлениях, в котором все электрические и магнитные явления рассматриваются с единой точки зрения. С помощью опытов он доказал, что действия электрических зарядов и токов не зависят от способа их получения [до Фарадея различали "обыкновенное" (полученное при электризации трением), атмосферное, "гальваническое", магнитное, термоэлектрическое, "животное" и другие виды Э.].

Опыт Араго ("магнетизм вращения").

В 1831 Фарадей открыл индукцию электромагнитную - возбуждение электрического тока в контуре, находящемся в переменном магнитном поле. Это явление (наблюдавшееся в 1832 также Дж. Генри) составляет фундамент электротехники. В 1833-34 Фарадей установил законы электролиза; эти его работы положили начало электрохимии. В дальнейшем он, пытаясь найти взаимосвязь электрических и магнитных явлений с оптическими, открыл поляризацию диэлектриков (1837), явления парамагнетизма и диамагнетизма (1845), магнитное вращение плоскости поляризации света (1845) и др.

Фарадей впервые ввёл представление об электрическом и магнитном полях. Он отрицал концепцию дальнодействия, сторонники которой считали, что тела непосредственно (через пустоту) на расстоянии действуют друг на друга.

Согласно идеям Фарадея, взаимодействие между зарядами и токами осуществляется посредством промежуточных агентов: заряды и токи создают в окружающем пространстве электрическое или (соответственно) магнитное поля, с помощью которых взаимодействие передаётся от точки к точке (концепция близкодействия). В основе его представлений об электрическом и магнитном полях лежало понятие силовых линий, которые он рассматривал как механические образования в гипотетической среде - эфире, подобные растянутым упругим нитям или шнурам.

Идеи Фарадея о реальности электромагнитного поля не сразу получили признание. Первая математическая формулировка законов электромагнитной индукции была дана ф. Нейманом в 1845 на языке концепции дальнодействия.

Им же были введены важные понятия коэффициентов само- и взаимоиндукции токов. Значение этих понятий полностью раскрылось позднее, когда У. Томсон (лорд Кельвин) развил (1853) теорию электрических колебаний в контуре, состоящем из конденсатора (электроёмкость) и катушки (индуктивность).
Большое значение для развития учения об электричестве имело создание новых приборов и методов электрических измерений, а также единая система электрических и магнитных единиц измерений, созданная Гауссом и В.Вебером.

В 1846 Вебер указал на связь силы тока с плотностью электрических зарядов в проводнике и скоростью их упорядоченного перемещения. Он установил также закон взаимодействия движущихся точечных зарядов, который содержал новую универсальную электродинамическую постоянную, представляющую собой отношение электростатических и электромагнитных единиц заряда и имеющую размерность скорости.

При экспериментальном определении (Вебер и ф. Кольрауш, 1856) этой постоянной было получено значение, близкое к скорости света; это явилось определённым указанием на связь электромагнитных явлений с оптическими.

В 1861-73 учение об электричестве получило своё развитие и завершение в работах Дж. К. Максвелла. Опираясь на эмпирические законы электромагнитных явлений и введя гипотезу о порождении магнитного поля переменным электрическим полем, Максвелл сформулировал фундаментальные уравнения классической электродинамики, названные его именем. При этом он, подобно Фарадею, рассматривал электромагнитные явления как некоторую форму механических процессов в эфире.

Главное новое следствие, вытекающее из этих уравнений, - существование электромагнитных волн, распространяющихся со скоростью света. Уравнения Максвелла легли в основу электромагнитной теории света. Решающее подтверждение теория Максвелла нашла в 1886-89, когда Г.Герц экспериментально установил существование электромагнитных волн. После его открытия были предприняты попытки установить связь с помощью электромагнитных волн, завершившиеся созданием радио, и начались интенсивные исследования в области радиотехники.

В конце XIX - начале XX вв. начался новый этап в развитии теории электричества. Исследования электрических разрядов увенчались открытием Дж. Дж. Томсоном дискретности электрических зарядов. В 1897 он измерил отношение заряда электрона к его массе, а в 1898 определил абсолютную величину заряда электрона. Х. Лоренц, опираясь на открытие Томсона и выводы молекулярно-кинетической теории, заложил основы электронной теории строения вещества. В классической электронной теории вещество рассматривается как совокупность электрически заряженных частиц, движение которых подчинено законам классической механики. Уравнения Максвелла получаются из уравнений электронной теории статистическим усреднением.

Попытки применения законов классической электродинамики к исследованию электромагнитных процессов в движущихся средах натолкнулись на существенные трудности. Стремясь разрешить их, А. Эйнштейн пришёл (1905) к относительности теории. Эта теория окончательно опровергла идею существования эфира, наделённого механическими свойствами. После создания теории относительности стало очевидно, что законы электродинамики не могут быть сведены к законам классической механики.

На малых пространственно-временных интервалах становятся существенными квантовые свойства электромагнитного поля, не учитываемые классической теорией электричества. Квантовая теория электромагнитных процессов - квантовая электродинамика - была создана во 2-й четверти XX в. Квантовая теория вещества и поля уже выходит за пределы учения об электричестве, изучает более фундаментальные проблемы, касающиеся законов движения элементарных частиц и их строения.

С открытием новых фактов и созданием новых теорий значение классического учения об электричестве не уменьшилось, были определены лишь границы применимости классической электродинамики. В этих пределах уравнения Максвелла и классическая электронная теория сохраняют силу, являясь фундаментом современной теории электричества.

Классическая электродинамика составляет основу большинства разделов электротехники, радиотехники, электроники и оптики (исключение составляет квантовая электроника). С помощью её уравнений было решено огромное число задач теоретического и прикладного характера. В частности, многочисленные проблемы поведения плазмы в лабораторных условиях и в космосе решаются с помощью уравнений Максвелла.

Один из первых рисунков магнитного поля (Рене Декарт, 1644). Хотя магниты и магнетизм были известны гораздо раньше, изучение магнитного поля началось в 1269 году, когда французский ученый Пётр Перегрин (рыцарь Пьер из Мерикура) отметил магнитное поле на поверхности сферического магнита, применяя стальные иглы, и определил, что получающиеся линии магнитного поля пересекались в двух точках, которые он назвал «полюсами» по аналогии с полюсами Земли. Почти три столетия спустя, Уильям Гильберт Колчестер использовал труд Петра Перегрина и впервые определённо заявил, что сама Земля является магнитом. Опубликованная в 1600 году, работа Гилберта «De Magnete» , заложила основы магнетизма как науки.

В 1750 году Джон Мичелл заявил, что магнитные полюса притягиваются и отталкиваются в соответствии с законом обратных квадратов. Шарль-Огюстен де Кулон экспериментально проверил это утверждение в 1785 году и прямо заявил, что Северный и Южный полюс не могут быть разделены. Основываясь на этой силе, существующей между полюсами, Симеон Дени Пуассон, (1781-1840) создал первую успешную модель магнитного поля, которую он представил в 1824 году. В этой модели магнитное H-поле производится магнитными полюсами и магнетизм происходит из-за нескольких пар (север/юг) магнитных полюсов (диполей).

Три открытия подряд бросили вызов этой «основе магнетизма». Во-первых, в 1819 году Ханс Кристиан Эрстед обнаружил, что электрический ток создает магнитное поле вокруг себя. Затем, в 1820 году, Андре-Мари Ампер показал, что параллельные провода, по которым идёт ток в одном и том же направлении, притягиваются друг к другу. Наконец, Жан-Батист Био и Феликс Савар в 1820 году открыли закон, названный законом Био-Савара-Лапласа, который правильно предсказывал магнитное поле вокруг любого провода, находящегося под напряжением.

Расширив эти эксперименты, Ампер издал свою собственную успешную модель магнетизма в 1825 году. В ней он показал эквивалентность электрического тока в магнитах, и вместо диполей магнитных зарядов модели Пуассона, предложил идею, что магнетизм связан с постоянно текущими петлями тока. Эта идея объясняла, почему магнитный заряд не может быть изолирован. Кроме того, Ампер вывел закон, названный его именем, который, как и закон Био-Савара-Лапласа, правильно описал магнитное поле, создаваемое постоянным током, а также была введена теорема о циркуляции магнитного поля. Кроме того, в этой работе, Ампер ввел термин «электродинамика» для описания взаимосвязи между электричеством и магнетизмом. В 1831 году Майкл Фарадей открыл электромагнитную индукцию, когда он обнаружил, что переменное магнитное поле порождает электричество. Он создал определение этого феномена, которое известно как закон электромагнитной индукции Фарадея. Позже Франц Эрнст Нейман доказал, что для движущегося проводника в магнитном поле, индукция является следствием действия закона Ампера. При этом он ввел векторный потенциал электромагнитного поля который, как позднее было показано, был эквивалентен основному механизму, предложенному Фарадеем. В 1850 году лорд Кельвин, тогда известный как Уильям Томсон, различие между двумя магнитными полями обозначил как поля H и B . Первое было применимо к модели Пуассона, а второе - к модели индукции Ампера. Кроме того, он вывел как H и B связаны друг с другом. Между 1861 и 1865 годами Джеймс Клерк Максвелл разработал и опубликовал уравнения Максвелла, которые объяснили и объединили электричество и магнетизм в классической физике. Первая подборка этих уравнений была опубликована в статье в 1861 году, озаглавленной «On Physical Lines of Force» . Эти уравнения были признаны действительными, хотя и неполными. Максвелл завершил свои уравнения в своей более поздней работе 1865 года «Динамическая теория электромагнитного поля» и определил, что свет представляет собой электромагнитные волны. Генрих Герц экспериментально подтвердил этот факт в 1887 году. Хотя подразумеваемая в законе Ампера сила магнитного поля движущегося электрического заряда не была явно заявлена, в 1892 году Хендрик Лоренц вывел её из уравнений Максвелла. При этом классическая теория электродинамики была в основном завершена.


Двадцатый век расширил взгляды на электродинамику, благодаря появлению теории относительности и квантовой механики. Альберт Эйнштейн в своей статье 1905 года, где была обоснована его теория относительности, показал, что электрические и магнитные поля являются частью одного и того же явления, рассматриваемого в разных системах отсчета - мысленный эксперимент, который в конечном итоге помог Эйнштейну в разработке специальной теории относительности. Наконец, квантовая механика была объединена с электродинамикой для формирования квантовой электродинамики (КЭД).

Магнитное поле Магнитный феномен впервые наблюдался по крайне мере 2500 лет назад Компас - около 4500 лет назад

Магниты Было замечено, что если поднести к куску не намагниченного железа постоянный (природный) магнит, то железо тоже становиться намагниченным. После удаления магнита намагнитившийся под его действием кусок железа или стали теряет значительную часть своих магнитных свойств, но все же остается в большей или меньшей мере намагниченным. Он превращается, таким образом, в искусственный магнит, обладающий всеми теми же свойствами, что и магнит естественный

Магнитное поле S N N F F ученые предлагали ввести понятия магнитного заряда, как северный и южный заряд, аналогично полюсам магнита. Однако экспериментально не было получено доказательств существования изолированных магнитных зарядов, которые называются магнитным монополем F F S S N N S N S S N N N S S N S F F

Опыт Эрстеда N E W S в 19 веке была обнаружена связь между электричеством и магнетизмом. n опыты Эрстеда. n Из этих опытов следовало, что на магнитную стрелку, расположенную вблизи проводника с током, действуют силы, которые стремятся повернуть стрелку N E W S

Часть II МАГНЕТИЗМ, ВОЛНОВАЯ И КВАНТОВАЯ ОПТИКА, АТОМНАЯ И ЯДЕРНАЯ ФИЗИКА Магнитное поле и его характеристики Важнейшей особенностью магнитного поля является то, что оно действует только на движущиеся в этом поле электрические заряды. Характер воздействия магнитного поля на ток различен в зависимости от формы проводника, по которому течет ток, от расположения проводника и от направления тока в нем. В качестве положительного направления нормали принимается направление, связанное с током правилом правого винта.

(33. 1) (33. 2) Магнитная индукция B в данной точке однородного магнитного поля определяется максимальным вращающим моментом Mmax, действующим на рамку с магнитным моментом pm, равным единице, когда нормаль к рамке n перпендикулярна направлению поля. (33. 3)

Сила Ампера (1/2) Одним из важных примеров магнитного взаимодействия токов является взаимодействие параллельных токов. эти явления были экспериментально установлены Ампером. Если по двум параллельным проводникам электрические токи текут в одну и ту же сторону, то наблюдается взаимное притяжение проводников. В случае, когда токи текут в противоположных направлениях, проводники отталкиваются.

§ 37 Действие магнитного поля на движущийся заряд Сила, действующая на электрический заряд q, движущийся в магнитном поле со скоростью v, называется силой Лоренца и выражается формулой (37. 1) Направление силы Лоренца определяется правилом левой руки. (37. 2) – формула Лоренца

Движение заряженных частиц в магнитном поле 3. – частица движется по прямой, вдоль векрора В Работа силы Лоренца равна нулю

Масс-спектрометр масс-спектрометры – устройства с помощью которых можно измерять массы заряженных частиц – ионов или ядер различных атомов Современные масс-спектрометры позволяют измерять массы заряженных частиц с точностью выше 10– 4

Ускорители заряженных частиц Ускорителями заряженных частиц называются устройства, в которых под действием электрических и магнитных полей создаются и управляются пучки высокоэнергетических заряженных частиц. Ускорители по времени действия бывают непрерывные и импульсные. По форме траектории и механизму ускорения частиц ускорители делятся на линейные, циклические и индукционные. 1. Линейный ускоритель: , электрическое поле – постоянно 2. Линейно-резонансный: , электрическое поле – переменное 3. Циклотрон: , ограничения релятивистским эффектом

4. Фазотрон: E – изменяется, 5. Синхротрон: , – изменяется, 6. Синхрофазотрон: и – изменяются, 7. Бетатрон: – вихревое,

Эффект Холла – это возникновение в металлах (или полупроводника) с током плотностью, помещенных в магнитное поле, электрического поля в направлении перпендикулярном и.

§ 41 Циркуляция вектора магнитной индукции для магнитного поля в вакууме Циркуляцией вектора магнитной индукции по заданному контуру называется интеграл Закон полного тока: циркуляция вектора магнитной индукции по произвольному замкнутому контуру равна произведению магнитной постоянной 0 на алгебраическую сумму токов, охватываемую этим контуром (41. 1) Циркуляция вектора магнитной индукции не равна нулю, следовательно, магнитное поле будет вихревым.

Магнитное поле соленоида и тороида На участках AB и CD На участке вне соленоида (42. 1) (42. 2)

Поток вектора магнитной индукции. Теорема Гаусса для магнитного поля Потоком вектора магнитной индукции (магнитным потоком) через площадку d. S называется скалярная физическая величина, равная (43. 1)

Теорема Гаусса для магнитного поля: поток вектора магнитной индукции через любую замкнутую поверхность равен нулю. (43. 3) В природе нет магнитных зарядов

Работа по перемещению проводника и контура с током в магнитном поле (44. 1) Работа по перемещению проводника с током в магнитном поле равна произведению силы тока на магнитный поток, пересеченный движущимся проводником.

(44. 2) (44. 3) (44. 4) (44. 5) (44. 6) Работа по перемещению замкнутого контура с током в магнитном поле равна произведению силы тока в контуре на изменение магнитного потока, сцепленного с контуром.

Явления электромагнитной индукции В 1831 г. М. Фарадей открыл явление электромагнитной индукции 1. Направления отклонения стрелки в момент вдвигания и выдвигания магнита противоположны. 2. Отклонения стрелки гальванометра тем больше, чем больше скорость движения магнита относительно катушки. 3. При изменении полюсов магнита Опыт № 1 направление отклонения стрелки изменяется. В замкнутом проводящем контуре при изменении потока магнитной индукции, охватываемого этим контуром, возникает электрический ток, получивший название индукционного.

Опыт № 2 1. Отклонения стрелки гальванометра наблюдается в момент вклю чения или выключения тока, в момент его увеличения или умень шения или при перемещении катушек друг относительно друга. 2. Направления отклонения стрелки гальванометра также противоположны при включении или выключении тока, его увеличении или уменьшении, сближении и удалении катушек.

Вывод № 1: Индукционный ток возникает всегда, когда происходит изменение сцепленного с контуром потока магнитной индукции (например, при повороте в однородном магнитном поле проводящего контура). Вывод № 2: Значение индукционного тока совершенно не зависит от способа изменения потока магнитной индукции, а определяется лишь скоростью его изменения. Значения открытия Фарадея 1. Была доказана возможность получения электрического тока с помощью магнитного поля. 2. Была установлена взаимосвязь между электрическими и магнитными явлениями, что послужило дальнейшим толчком для разработки теории электромагнитного поля.

Закон Фарадея Закон электромагнитной индукции Фарадея: каковы бы ни были причины изменения потока магнитной индукции, охватываемого замкнутым проводящим контуром, возникающая в контуре Э. Д. С равна (46. 1) Закон Фарадея: Э. Д. С электромагнитной индукции в контуре численно равна и противоположна по знаку скорости изменения магнитного потока сквозь поверхность, ограниченную этим контуром.

Правило Ленца: индукционный ток в контуре имеет всегда такое направление, что создаваемое им магнитное поле препятствует изменению магнитного потока, вызвавшего этот индукционный ток.

Вращение рамки в магнитном поле (47. 1) (47. 2) Если в однородном магнитном поле равномерно вращается рамка, то в ней возникает переменная Э. Д. С. , изменяющаяся по гармоническому закону.

Вихревые токи (Токи Фуко) Токи, возникающие в массивных сплошных проводниках и оказывающиеся замкнутыми в толще проводника, называются вихревыми или токами Фуко. Успокоение (демпфирование) подвижных частей различных приборов

Джоулева теплота, выделяемая токами Фуко, используется в индукционных металлургических печах. Скин-эффект Метод поверхностной закалки металлов

Индуктивность контура. Самоиндукция (49. 1) (49. 2) Возникновение Э. Д. С. индукции в проводящем контуре при изменении в нем силы тока называется самоиндукцией. (49. 3)

Токи при размыкании и замыкании цепи (50. 1) Время релаксации – это время, в течение которого какая-либо физическая величина уменьшается в e раз.

Взаимная индукция (51. 1) Явление возникновение Э. Д. С. в одном из контуров при изменении силы тока в другом называется взаимной индукцией. (51. 2)

Трансформаторы Принцип действия трансформаторов, применяемых для повышения или понижения напряжения переменного тока, основан на явлении взаимной индукции. (52. 1) (52. 2) (52. 3) – коэффициент трансформации

Магнитные свойства веществ Магнитные моменты электронов и атомов (54. 1) (54. 2) (54. 3) (54. 4)

Парамагнетики и диамагнетики Почти все вещества подчиняются зависимости могут быть разбиты на два класса: – – парамагнетики, в которых намагниченность вещества увеличивает суммарное магнитное поле; , они втягиваются в область сильного неоднородного магнитного поля. – диамагнетики, в которых намагниченность уменьшает суммарное поле; диамагнетики выталкиваются из области сильного неоднородного поля.

§ 56 Намагниченность. Магнитное поле в веществе Намагниченность – это величина магнитного момента единицы объема вещества (56. 1) (56. 2) (56. 3)

(56. 4) (56. 5) (56. 6) (56. 7) (56. 8) Парамагнетики μ = 1, 000072 Диамагнетики μ = 0, 9999967 Ферромагнетики μ >> 1

(56. 9) (56. 10) Формула (56. 10) представляет собой теорему о циркуляции вектора напряженности магнитного поля.

Ферромагнетики и их свойства Ферромагнетики – это вещества, обладающие спонтанной намагниченностью, т. е. они намагничены даже в отсутствии внешнего магнитного поля. 1. Ферромагнетики – это сильномагнитные вещества.

4. Гистерезис точка насыщения остаточная индукция коэрцитивная сила точка насыщения 5. Точка Кюри – температура, выше которой ферромагнитные свойства исчезают, и вещество становится парамагнетиком.

Для железа эта температура Кюри равна 768 С, а для никеля – 365 С. Переход ферромагнетиков в парамагнитное состояние является фазовым переходом II рода. 6. Процесс намагничивания ферромагнетиков сопровождается изменением его линейных размеров и объема. Это явление получило название магнитострикции.

Природа ферромагнетизма. Теория ферромагнетизма П. Вейсса Ферромагнетики ниже точки Кюри разбиваются на большое число малых микроскопических областей – доменов, самопроизвольно намагниченных до насыщения. Линейные размеры доменов равны 10 -4 10 -2 см.

Электромагнитные колебания и волны Свободные гармонические колебания в колебательном контуре Колебательный контур – цепь, состоящая из включенных последовательно катушки индуктивностью L, конденсатора емкостью С и резистора сопротивлением R.

Экспериментальное получение электромагнитных волн Частота волны, Гц Источник излучения 103 – 10– 4 3 105 – 3 1012 Колебательный контур Вибратор Герца Массовый излучатель Ламповый генератор Световые волны: Инфракрасное излучение 5 10– 4 – 8 10– 7 6 1011 – 3, 75 1014 Видимый свет 8 10– 7 – 4 10– 7 3, 75 1014 – 7, 5 1014 4 10– 7 – 10– 9 7, 5 1014 – 3 1017 2 10– 9 – 6 10– 12 1, 5 1017 – 5 1019 Вид излучения Радиоволны Ультрафиолетовое излучение Рентгеновское излучение –излучение Длина волны, м 5∙ 1019 Лампы Лазеры Трубка Рентгена Космические лучи Радиоактивный распад Ядерные процессы Космические процессы

Из уравнений Максвелла следует, что переменное магнитное поле всегда связано с порождаемым им электрическим полем, а переменное электрическое поле всегда связано с порождаемым им магнитным; т. е. электрическое и магнитное поля неразрывно связаны друг с другом – они образуют единое электромагнитное поле. Теория Максвелла позволила предсказать существование электромагнитных волн – переменного электромагнитного поля, распространяющегося в пространстве с конечной скоростью.

 


Читайте:



Духовно-рыцарские ордена – кратко

Духовно-рыцарские ордена – кратко

Орден госпитальеров — самый знаменитый и прославленный из духовно-рыцарских орденов. Полное его наименование — Суверенный Военный Орден...

Загадочная цивилизация мерое Прогулка по древнему городу

Загадочная цивилизация мерое Прогулка по древнему городу

Сведений о цивилизации Мероэ в Африке не встретишь в школьных учебниках по истории, о ней редко упоминают даже в специализированной литературе. А...

Сочинение Pros and cons of the Internet на английском с переводом

Сочинение Pros and cons of the Internet на английском с переводом

В данной статье мы разберемся с тем, как написать сочинение про плюсы и минусы Интернета на английском языке. Статья включает в себя рекомендации...

Мазепа и Кочубей: политический детектив эпохи Войска Запорожского Дочь кочубея

Мазепа и Кочубей: политический детектив эпохи Войска Запорожского Дочь кочубея

«Мерзкий блуд есть, старых и мудрых таковоздание,А тебе, старый бздуну, конец, вечное мучение».И.Мазепа Дума «Старик с телом беседует». 1704 г....

feed-image RSS