Главная - Коэльо Пауло
Большинство ядерных реакций могут идти несколькими способами. Ядерные реакции и их классификации. Механизмы протекания ядерных реакций

Ядерные реакции - это превращения атомных ядер при взаимодействии с элементарными частицами (в том числе и с γ -квантами) или друг с другом. Символически реакции записываются в виде:

X + a→Y + b , или X(a,b) Y

где X и Y - исходное и конечное ядра, a и b - бомбардирующая и испускаемая (или испускаемые) в ядерной реакции частицы.

В любой ядерной реакции выполняются законы сохранения электрических зарядов и массовых чисел: сумма зарядов (и массовых чисел) ядер и частиц, вступающих в ядерную реакцию, равна сумме зарядов (и сумме массовых чисел) конечных продуктов (ядер и частиц) реакции. Выполняются также законы сохранения энергии, импульса и момента импульса.

Ядерные реакции могут быть как экзотермическими (с выделением энергии) так и эндотермическими (с поглощением энергии).

Ядерные реакции классифицируются:

1) по роду участвующих в них частиц - реакции под действием нейтронов; заряженных частиц; γ -квантов;

2) по энергии вызывающих их частиц - реакции при малых, средних и высоких энергиях;

3) по роду участвующих в них ядер - реакции на легких (A < 50) ; средних (50 < A <100) и тяжелых (A >100) ядрах;

4) по характеру происходящих ядерных превращений - реакции с испусканием нейтронов, заряженных частиц; реакции захвата (в случае этих реакций составное ядро не испускает никаких частиц, а переходит в основное состояние, излучая один или несколько γ -квантов).

Первая в истории ядерная реакция была осуществлена Резерфордом

1939 год - О. Ган и Ф. Штрассман открыли деление ядер урана: при бомбардировке урана нейтронами возникают элементы средней части периодической системы – радиоактивные изотопы бария (Z = 56), криптона (Z = 36) – осколки деления и др. Деление тяжелого ядра на два осколка сопровождается выделением энергии порядка 1 МэВ на каждый нуклон.

Например, возможны два варианта протекания реакции деления ядер урана.


В основу теории деления атомных ядер положена капельная модель ядра . Ядро рассматривается как капля электрически заряженной несжимаемой жидкости (а) с плотностью, равной ядерной, и подчиняющейся законам квантовой механики. При захвате нейтрона устойчивость такой заряженной капли нарушается, ядро приходит в колебания - попеременно то вытягивается, то сжимается. Вероятность деления ядер определяется энергией активации - минимальной энергией, необходимой для осуществления реакции деления ядра. При энергиях возбуждения меньших чем энергия активации деления, деформация ядра-капли не доходит до критической (б), ядро не делится и возвращается в сновное энергетическое состояние, испустив γ -квант. При энергиях возбуждения больше энергии активации деления деформация капли достигает критического значения (в) образуется и удлиняется "перетяжка" в капле (г) и наступает деление (д).

Каждый из мгновенных нейтронов, возникших в реакции деления, взаимодействуя с соседними ядрами делящегося вещества, вызывает в них реакцию деления. При этом идет лавинообразное нарастание числа актов деления - начинается цепная реакция деления - ядерная реакция, в которой частицы, вызывающие реакцию, образуются как продукты этой реакции. Условием возникновения цепной реакции является наличие размножающихся нейтронов.

Коэффициентом размножения нейтронов k называется отношение числа нейтронов, возникающих в некотором звене реакции, к числу таких нейтронов в предшествующем звене.

Необходимое условие развития цепной реакции: k >1. Такая реакция называются развивающаяся реакция. При k =1 идет самоподдерживающаяся реакция. При k <1 идет затухающая реакция.

Коэффициент размножения зависит от природы делящегося вещества, а для данного изотопа - от его количества, а также размеров и формы активной зоны - пространства, где происходит цепная реакция.

Минимальные размеры активной зоны, при которых возможно осуществление цепной реакции, называется критическими размерами.

Минимальная масса делящегося вещества, находящегося в системе критических размеров, необходимая для осуществления цепной реакции, называется критической массой.

Цепные реакции делятся на управляемые и неуправляемые. Взрыв атомной бомбы - пример неуправляемой реакции. Управляемые цепные реакции осуществляются в ядерных реакторах.

Устройство, в котором поддерживается управляемая реакция деления ядер, называется ядерным (или атомным) реактором. Ядерные реакторы используются, например, в атомных электростанциях.

Рассмотрим схему реактора на медленных нейтронах. Ядерным горючим в таких реакторах могут быть:

1) - в естественном уране его содержится примерно 0,7%;

2) , получается из по схеме

3) получается из тория по схеме

В активной зоне реактора расположены тепловыделяющие элементы из ядерного горючего (твэлы) 1 и замедлитель 2 (в нем нейтроны замедляются до тепловых скоростей). Твэлы представляют собой блоки из делящегося материала, заключенные в герметичную оболочку, слабо поглощающую нейтроны. За счет энергии, выделяющейся при делении ядер, твэлы разогреваются, а поэтому для охлаждения они помещаются в поток теплоносителя 3. Активная зона окружена отражателем 4, уменьшающим утечку нейтронов. Поддержание стационарного режима реактора производится с помощью управляющих стержней 5 из материалов, сильно поглощающих нейтроны, например

из бора или кадмия. Теплоносителем в реакторе служит вода, жидкий натрий и др. Теплоноситель в парогенераторе отдает свое тепло пару, который поступает в паровую турбину. Турбина вращает электрический генератор, ток от которого поступает в электрическую сеть.


Ядерные реакции - это превращения атомных ядер при взаимодействии с элементарными частицами (в том числе и с g -квантами) или друг с другом. Наиболее распространенным видом ядерной реакции является реакция, записываемая символически следующим образом:

где X и Y - исходное и конечное ядра, а и b - бомбардирующая и испускаемая (или испускаемые) в ядерной реакции частицы.

В ядерной физике эффективность взаимодействия характеризуют эффективным сечением а. С каждым видом взаимодействия частицы с ядром связывают свое эффективное сечение: эффективное сечение рассеяния определяет процессы рассеяния, эффективное сечение поглощения - процессы поглощения. Эффективное сечение ядерной реакции

где N - число частиц, падающих за единицу времени на единицу площади поперечного сечения вещества, имеющего в единице объема nядер, dN- число этих частиц, вступающих в ядерную реакцию в слое толщиной dх. Эффективное сечение а имеет размерность площади и характеризует вероятность того, что при падении пучка частиц на вещество произойдет реакция.

Единица эффективного сечения ядерных процессов - барн (1 барн =10 -28 м 2).

В любой ядерной реакции выполняются законы сохранения электрических зарядов и массовых чисел: сумма зарядов (и сумма массовых чисел) ядер и частиц, вступающих в ядерную реакцию, равна сумме зарядов (и сумме массовых чисел) конечных продук тов (ядер и частиц) реакции. Выполняются такжезаконы сохранения энергии, импульса и момента импульса.

Важную роль в объяснении механизма многих ядерных реакций сыграло пред положение Н. Бора (1936) о том, что ядерные реакции протекают в две стадии по следующей схеме:

Первая стадия - это захват ядром X частицы а, приблизившейся к нему на расстояние действия ядерных сил (примерно 2×10 -15 м), и образование промежуточного ядра С, называемого составным (или компаунд-ядром). Энергия влетевшей в ядро частицы быстро распределяется между нуклонами составного ядра, в результате чего оно оказывается в возбужденном состоянии. При столкновении нуклонов составного ядра один из нуклонов (или их комбинация, например дейтрон - ядро тяжелого изотопа водорода - дейтерия, содержащее один протон и один нейтрон) или a-частица может получить энергию, достаточную для вылета из ядра. В результате возможна вторая стадия ядерной реакции - распад составного ядра на ядро Y и частицу b.

В ядерной физике вводится характерное ядерное время - время, необходимое для пролета частицей расстояния порядка величины, равной диаметру ядра (d» 10 -15 м). Так, для частицы с энергией 1 МэВ (что сответствует ее скорости v » 10 7 м/с) характер ное ядерное время t = 10 -15 м/10 7 м/с = 10 -22 с. С другой стороны, доказано, что время жизни составного ядра равно 10 - 16 -10 - 12 с, т.е. составляет (10 6 -10 10) т. Это же означает, что за время жизни составного ядра может произойти очень много столкновении нуклонов между собой, т. е. перераспределение энергии между нуклонами действительно возможно. Следовательно, составное ядро живет настолько долго, что полностью «забывает», каким образом оно образовалось. Поэтому характер распада составного ядра (испускание им частицы b)- вторая стадия ядерной реакции - не зависит от способа образования составного ядра - первой стадии.

Ядерные реакции классифицируются по следующим признакам:

1) по роду участвующих в них частиц - реакции под действием нейтронов; реакции под действием заряженных частиц (например, протонов, дейтронов, a -частиц); реакции под действием g -квантов;

2) по энергии вызывающих их частиц - реакции при малых энергиях (порядка электрон-вольт), происходящие в основном с участием нейтронов; реакции при средних энергиях (до нескольких мегаэлектрон-вольт), происходящие с участием g -квантов и заряженных частиц (протоны, a -частицы); реакции при высоких энергиях (сотни и тысячи мегаэлектрон-вольт), приводящие к рождению отсутствующих в свободном состоянии элементарных частиц и имеющие большое значение для их изучения;

3) по роду участвующих в них ядер - реакции на легких ядрах (А <50); реакции на средних ядрах (50 < A < 100); реакции на тяжелых ядрах (А > 100);

4) по характеру происходящих ядерных превращений - реакции с испусканием нейтронов; реакции с испусканием заряженных частиц; реакции захвата (в этих реакциях составное ядро не испускает никаких частиц, а переходит в основное состояние, излучая один или несколько g -квантов).

Первая в истории ядерная реакция осуществлена Э. Резерфордом (1919) при бомбардировке ядра азота a -частицами, испускаемыми радиоактивным источником.

Ядерные реакции - это превращения атомных ядер при взаимодействии с элементарными частицами (в том числе и с у-квантами) или друг с другом. Наиболее распространенным видом ядерной реакции является реакция, записываемая символически следующим образом:

где X и У - исходное и конечное ядра, а и Ь - бомбардирующая и испускаемая (или испускаемые) в ядерной реакции частицы.

В любой ядерной реакции выполняются законы сохранения зарядовых и массовых чисел: сумма зарядовых (массовых ) чисел ядер и частиц, вступающих в ядерную реакцию, равна сумме зарядовых (массовых) чисел конечных продуктов (ядер и частиц) реакции . Выполняются также законы сохранения энергии, импульса и момента импульса.

В отличие от радиоактивного распада, который протекает всегда с выделением энергии, ядерные реакции могут быть как экзотермическими (с выделением энергии), так и эндотермическими (с поглощением энергии).

Важную роль в объяснении механизма многих ядерных реакций сыграло предположение Н. Бора (1936) о том, что ядерные реакции протекают в две стадии по следующей схеме:

Первая стадия - это захват ядром X частицы а, приблизившейся к нему на расстояние действия ядерных сил (примерно 2 10 15 м), и образование промежуточного ядра С, называемого составным (или компаунд-ядром). Энергия влетевшей в ядро частицы быстро распределяется между нуклонами составного ядра, в результате чего оно оказывается в возбужденном состоянии. При столкновении нуклонов составного ядра один из нуклонов (или их комбинация, например дейтрон - ядро тяжелого изотопа водорода - дейтерия, содержащее один протон и один нейтрон) или сх-частица может получить энергию, достаточную для вылета из ядра. В результате возможна вторая стадия ядерной реакции - распад составного ядра на ядро У и частицу Ь.

Классификация ядерных реакций

По роду участвующих в реакциях частиц:

  • реакции под действием нейтронов;
  • реакции под действием заряженных частиц (например, протонов, (Х-частиц).

По энергии вызывающих реакции частиц:

  • реакции при малых энергиях (порядка эВ), происходящие в основном с участием нейтронов;
  • реакции при средних энергиях (несколько МэВ), происходящие с участием уквантов и заряженных частиц;
  • реакции при высоких энергиях (сотни и тысячи МэВ), приводящие к рождению отсутствующих в свободном состоянии элементарных частиц и имеющие большое значение для их изучения.

По роду участвующих в реакциях ядер:

  • реакции на легких ядрах (А 50);
  • реакции на средних ядрах (50 А
  • реакции на тяжелых ядрах (А > 150).

По характеру происходящих ядерных превращений:

  • реакции с испусканием нейтронов;
  • реакции с испусканием заряженных частиц. Первая в истории ядерная реакция (Резерфорд; 1919)

Ядерной реакцией называется процесс перестройки ядра, сопровождаемый генерацией новых частиц, возникающий под действием или в результате взаимодействия двух ядер или ядра и частицы при их сближении до расстояний, на которых начинает проявляться действие ядерных сил .

В лабораторных условиях ядерные реакции осуществляются в основном при бомбардировке ядер пучками быстрых частиц. В результате столкновения появляются новые частицы, перераспределяется энергия и ймпульсы частиц.

Запись реакции производится либо в форме, аналогичной записи химических реакций:

Либо, что более принято в ядерной физике, как

где а - частица пучка, А - ядро мишени, вылетающая частица, В - ядро-продукт (или конечное ядро).

Полная запись ядерной реакции содержит символы элементов, число зарядов и массовые числа. Например, первую реакцию осуществленную Резерфордом в 1919 г., можно записать в виде

Если речь идет об общем типе реакции, безотносительно к частному виду мишени, то запись производится и в такой форме:

Первая буква в скобке обозначает тип налетающей частицы, буква (или буквы) после запятой показывает, какие частицы образуются в результате реакции помимо ядра отдачи.

Столкновение бомбардирующей частицы с ядром мишени может вызвать различные эффекты:

1. Упругое рассеяние - взаимодействие, при котором частица и ядро сохраняют свою индивидуальность и происходит только перераспределение их кинетической энергии. Движение частиц после взаимодействия подчиняется законам упругого удара. Состав и внутренняя энергия ядра, так же как и вид частицы, при этом не меняются:

2. Неупругое рассеяние. В этом случае вылетает частица того же вида, что и падающая, но конечное ядро образуется в возбужденном состоянии, что обозначается звездочкой. Состав ядра при этом также не меняется:

3. Собственно ядерная реакция - взаимодействие, при котором изменяются внутренние свойства и состав ядра мишени и вылетает новая частица:

Каждое из такого рода уравнений определяет, как говорят, свой канал реакции.

Сечения и выходы ядерных реакций.

При исследовании ядерной реакции стремятся определить: вероятность протекания ее по различным каналам при различных энергиях падающих частиц - так называемый «выход» данной реакции, угловое и энергетическое распределение продуктов реакции.

Как уже говорилось, эффективное сечение реакции выражает вероятность возникновения данного превращения за при бомбардировке ядра потоком с плотностью в 1 частйцу в сек на Если в мишени содержится ядер и на нее падает поток I частиц на в 1 сек, то происходит ядерных превращений в 1 сек. Полное эффективное сечение представляет собой сумму сечений процессов по всем каналам

Важной характеристикой реакции является зависимость эффективного сечения от энергии падающей частицы:

Эти зависимости называют функциями возбуждения ядерной реакции.

Выход реакции при данной энергии падающих частиц, т. е. отношение числа происшедших актов реакции к числу упавших на мишень частиц при условии, что на все ядра мишени падает одинаковый поток бомбардирующих частиц. Выход можно рассчитать, зная эффективное сечение процесса где число атомов мишени в столбике сечением и высотой, равной толщине мишени

Если плотность вещества мишени, то

Для толстой мишени, в которой происходит как изменение энергии, так и уменьшение потока частиц, выражение для выхода ядерных реакций имеет более сложный вид.

В общем виде ядерное взаимодействие можно записать в форме:

Наиболее распространенным типом ядерной реакции является взаимодействие легкой частицы a с ядром X , в результате чего образуется частица b и ядро Y . Это записывают символически так:

Роль частиц a и b чаще всего выполняют нейтрон n , протон p , дейтрон d , α-частица и γ-квант.

Процесс (4.2) обычно происходит неоднозначно, так как реакция может идти несколькими конкурирующими способами, т.е. частицы, рождающиеся в результате ядерной реакции (4.2), могут быть разными:

.

Разные возможности протекания ядерной реакции на втором этапе иногда называют каналами реакции . Начальный этап реакции называется входным каналом.

Два последних канала реакции относятся к случаям неупругого (A 1 + a ) и упругого (A + a ) ядерного рассеяния. Эти частные случаи ядерного взаимодействия отличаются от других тем, что продукты реакции совпадают с частицами, вступающими в реакцию, причем при упругом рассеянии сохраняется не только тип ядра, но и его внутреннее состояние, а при неупругом рассеянии внутреннее состояние ядра изменяется (ядро переходит в возбужденное состояние).



Рисунок 4.1. Качественная зависимость
вероятности распада ядра от энергии.

При изучении ядерной реакции представляет интерес идентификация каналов реакции, сравнительная вероятность протекания ее по разным каналам при различных энергиях падающих частиц.

Ядра могут находиться в различных энергетических состояниях . Состояние стабильного или радиоактивного ядра, которое соответствует минимальной энергии (массе) E 0 называется основным.

Из квантовой механики известно, что между энергией состояния и его временем жизни имеет место соотношение Гейзенберга :

ΔE = ћ / Δt,

Возбужденные ядра, испытывают различные виды энергетических переходов. Энергия возбуждения может сбрасываться по различными каналами (переводя ядра в основное состояние): испускания γ-квантов, деление ядра и т.д. По этой причине вводится понятие парциальной ширины уровня Γ i . Парциальная ширина резонансного уровня есть вероятность распада по i -му каналу. Тогда вероятность распада в единицу времени ω может быть представлена в виде:

.

Также большой интерес представляет энергия и угловое распределение образующихся частиц, и их внутреннее состояние (энергия возбуждения, спин, четность, изотопический спин).

Многие сведения о ядерных реакциях могут быть получены в результате применения законов сохранения.

Более подробную информацию по этому разделу можно посмотреть .

 


Читайте:



Сочинение My working day на английском с переводом

Сочинение My working day на английском с переводом

«Распорядок дня на английском языке» – одна из самых востребованных тем. Пожалуй, одна из первых, изучаемых в школе и повторяемых в ВУЗе. Будни или...

Star wars: история далекой-далекой галактики - легенды и сказания

Star wars: история далекой-далекой галактики - легенды и сказания

Кратко о статье: Расширенная вселенная давно развивается независимо от своих непосредственных создателей. Дабы не путаться в хронологии событий,...

ю Высшие и центральные государственные учреждения

ю Высшие и центральные государственные учреждения

В эпоху Петра I в России продолжились и усилились серьезные изменения в политической, экономической и культурной жизни России, начавшиеся еще в...

Духовно-рыцарские ордена – кратко

Духовно-рыцарские ордена – кратко

Орден госпитальеров — самый знаменитый и прославленный из духовно-рыцарских орденов. Полное его наименование — Суверенный Военный Орден...

feed-image RSS